indeed known to exhibit very small attractive interactions
toward other materials and among themselves5). Thus, we
were intrigued by the idea of immobilizing phosphine-free
perfluoro-tagged palladium nanoparticles on fluorous6 silica
gel (FSG) and evaluating the utilization of the immobilized
catalyst in the Heck reaction.
Herein we report the results of our study.
A previous attractive example of immobilization of pal-
ladium on FSG is due to Bannwarth et al.7 who prepared
several catalysts via adsorption of palladium(II) complexes
containing perfluoro-tagged phosphine ligands and showed
the advantages of their utilization (separation and recovery
of perfluoro-tagged catalysts) compared with fluorous bi-
phasic catalysis approaches using expensive and environ-
mentally persistent perfluorinated solvents.8
Phosphine-free perfluoro-tagged palladium nanoparticles
Pd-1 (diameter 2.3 ( 0.7 nm; 13.4% palladium) were
prepared as described previously for similar systems4e by
reduction of PdCl2 with methanol at 60 °C in the presence
of sodium chloride and compound 1, a stabilizing agent
featuring long perfluorinated chains, followed by the addition
of AcONa (Scheme 1 and Figure 1a). The electron diffraction
Figure 1. TEM images (Pd-1 and Pd-1/FSG) and electron
diffraction (Pd-1). (a) TEM image of Pd-1. (b) TEM image of Pd-
1/FSG. (c) TEM image of recovered Pd-1/FSG after 15 runs. (d)
Electron diffraction of Pd-1.
Scheme 1
To prepare the immobilized precatalyst, nanoparticles Pd-1
were dissolved in perfluorooctane, commercially available
FSG (C8; 35-70 µm) was added to the solution, and the
solvent was evaporated. The immobilized precatalyst (Pd-
1/FSG) was obtained as an air-stable powder. Transmission
electron microscopy (TEM) of Pd-1/FSG was carried out. It
showed well-defined spherical particles dispersed in the silica
matrix (Figure 1b). The mean diameter of the nanoparticles
was about 1.5 ( 0.7 nm.
A silica gel containing 100 mg of Pd-1 per g of FSG and
a 0.6 mol % palladium loading was initially evaluated in
the Heck reaction of methyl acrylate with iodobenzene in
DMF at 80 °C for 24 h. The reaction could be carried out in
the presence of air, and methyl cinnamate was obtained in
almost quantitative yield in the first run as well in the second
one. However, a loss of activity was observed in the third
run (85% yield) which became even more substantial in the
patterns of this sample were obtained, and the diffraction
rings can be ascribed to the (111), (200), (220), and (311)
crystallographic planes of the fcc-Pd (Figure 1d).
(2) (a) For some recent references, see: Akiyama, R.; Kobayashi, S.
Angew. Chem., Int. Ed. 2001, 40, 3469. (b) Ramarao, C.; Ley, S. V.; Smith,
S. C.; Shirley, I. M.; DeAlmeida, N. Chem. Commun. 2002, 1132. (c) Ley,
S. V.; Ramarao, C.; Gordon, R. S.; Holmes, A. B.; Morrison, A. J.;
McConvey, I. F.; Shirley, I. M.; Smith, S. C.; Smith, M. D. Chem. Commun.
2002, 1134. (d) Bremeyer, N.; Ley, S. V.; Ramarao, C.; Shirley, I. M.;
Smith, S. C. Synlett 2002, 1843. (e) Ley, S. V.; Mitchell, C.; Pears, D.;
Ramarao, C.; Yu, J.-Q.; Zhou, W. Org. Lett. 2003, 5, 4665.
(3) (a) Martinez, S.; Vallribera, A.; Cotet, C. L.; Popovici, M.; Martin,
L.; Roig, A.; Moreno-Man˜as, M.; Molins, E. New J. Chem. 2005, 29, 1342.
(b) Cotet, L. C.; Gich, M.; Roig, A.; Popescu, I. C.; Cosoveanu, V.; Molins,
E.; Danciu, V. J. Non-Cryst. Solids 2006, 352, 2772. (c) Cacchi, S.; Cotet,
C. L.; Fabrizi, G.; Forte, G.; Goggiamani, A.; Martin, L.; Martinez, S.;
Molins, E.; Moreno-Man˜as, M.; Petrucci, F.; Roig, A.; Vallribera, A.
Tetrahedron 2007, 63, 2519. (d) Soler, R.; Cacchi, S.; Fabrizi, G.; Forte,
G.; Mart´ın, L.; Mart´ınez, S.; Molins, E.; Moreno-Man˜as, M.; Petrucci, F.;
Roig, A.; Sebastia´n, R. M.; Vallribera, A. Synthesis 2007, 3068.
(4) (a) Moreno-Man˜as, M.; Pleixats, R.; Villarroya, S. Organometallics
2001, 20, 4524-4528. (b) Moreno-Man˜as, M.; Pleixats, R.; Villarroya, S.
Chem. Commun. 2002, 60-61 (c) Tristany, M.; Courmarcel, J.; Dieudonne,
P.; Moreno-Man˜as, M.; Pleixats, R.; Rimola, A.; Sodupe, M.; Villarroya,
S. Chem. Mater. 2006, 18, 716. (d) Serra-Muns, A.; Soler, R.; Badetti, E.;
de Mendoza, P.; Moreno-Man˜as, M.; Pleixats, R.; Sebastia´n, R. M.;
Vallribera, A. New J. Chem. 2006, 30, 1584. (e) Niembro, S.; Vallribera,
A.; Moreno-Man˜as, M. New J. Chem. 2008, 32, 94.
(5) (a) Banks, R. E., Smart, B. E., Tatlow, J. C., Eds. Organofluorine
Chemistry. Principles and Commercial Applications; Plenum: New York,
1994 (b) Kirsch, P. Ed. Moden Fluoroorganic Chemistry; Wiley-VCH:
Weinheim, 2004.
(6) For some recent reviews on fluorous catalysts, see: (a) Gladysz, J.
A.; Correa de Costa, R. In The Handbook of Fluorous Chemistry; Gladysz,
J. A., Curran, D. P., Horvath, I. T., Eds.; Wiley-VCH: Weinheim, 2004,
pp 24-40, see especially sections 4.6-4.9. (b) Curran, D. P. In The
Handbook of Fluorous Chemistry; Gladysz, J. A., Curran, D. P., Horvath,
I. T., Eds.; Wiley-VCH: Weinheim, 2004, pp 101-127, see section 7.6.
(c) Schneider, S.; Tzschucke, C. C.; Bannwarth, W. In The Handbook of
Fluorous Chemistry; Gladysz, J. A., Curran, D. P., Horvath, I. T., Eds.;
Wiley-VCH: Weinheim, 2004, pp 257-272. (d) Curran, D. P.; Fischer,
K.; Moura-Letts, G. Synlett 2004, 1379.
(7) (a) Tzschucke, C. C.; Markert, C.; Glatz, H.; Bannwarth, W. Angew.
Chem., Int. Ed. 2002, 41, 4500. (b) Tzschucke, C. C.; Bannwarth, W. HelV.
Chim. Acta 2004, 87, 2882.
(8) Ravishankara, A. R.; Solomon, S .; Turnipseed, A. A.; Warren, R.
F. Science 1993, 259, 194.
562
Org. Lett., Vol. 10, No. 4, 2008