Godoi et al.
SCHEME 1
ally complex metabolites present in the structure of several
biologically interesting compounds. In particular, 2H-benzopy-
rans are present in a variety of compounds that possess important
pharmaceutical and biological applications, such as Dau-
richromenic acid that exhibits anti-HIV activities4 and Coutar-
eagenin that is known to present antidiabetic properties.5
Therefore, the synthesis of 2H-benzopyran derivatives and their
properties have been thoroughly reported in the literature. The
synthetic methods to obtain multiple substituted 2H-benzopyran
can be basically divided into two classes. The first approach is
based on a construction of the 2H-benzopyran nucleus after the
substituents have been installed and properly functionalized. The
second approach is based on a preformed 2H-benzopyran to
which carbon substituents are attached in successive order. In
this context, electrophilic cyclizations of suitable unsaturated
systems have been frequently utilized to construct a wide range
of carbocycles and heterocycles.6 Important heterocycles, such
as indoles,7a,b benzo[b]furans,7c,d benzo[b]thiophenes,6g,7e
benzo[b]selenophenes,7f thiophenes,7g furans,6e pyrroles,7h and
benzopyrans,6a have been accessed using this protocol.
In addition, the introduction of chalcogen group into organic
molecules has found such wide utility because their effects on
an extraordinary number of very different reactions. They have
become attractive synthetic targets because of their chemo-,
regio-, and stereoselective reactions,8 use in a wide variety of
functional groups, avoiding protection group chemistry, and
useful biological activities.9 The selenium group can be
introduced in an organic substrate via both nucleophile and
electrophile reagents. After being introduced in an organic
substrate, the organoselenium groups can easily be removed by
selenoxide syn elimination10 and [2, 3] sigmatropic rearrange-
ment.11 The carbon-selenium bond can also be replaced by a
carbon-hydrogen,12 carbon-halogen,13 carbon-lithium,14 or
carbon-carbon bond.15
gies for the synthesis of substituted telluro and selenophenes.16
There are several reasons for this; they have a widely varied
synthetic organochemical potential. The chalcogen atom exer-
cises a stabilizing effect on neighboring positive as well as
negative charges. This makes the carbon responsive toward both
nucleophilic and electrophilic attack an extremely useful feature
for organic synthetic purposes. Recently, Larock and co-
workers6a reported an elegant synthesis of 2H-benzopyrans via
electrophilic cyclization of propargylic aryl ethers. In this study,
they were able to introduce an alkyl or aryl group at 4-position
and the iodine moiety at 3-position of benzopyran. A possible
extension of this interesting chemistry envisions that the
introduction of chalcogen substituent at 4-position at benzopy-
rans could provide a versatile synthetic handle for further
functionalization as well as lead to increased rates of cyclization.
To the best of our knowledge, there is no protocol describing
the introduction, at the same time, of both halogen and chalcogen
at 3 and 4-positions of benzopyran, respectively, using orga-
nochalcogen propargyl aryl ethers as substrate via electrophilic
cyclization reactions. The difference of the reactivity between
halogen and chalcogen functionality can constitute as a synthetic
approach to the preparation of benzopyran compounds. In this
study, we optimized the preparation of organochalcogen pro-
pargyl aryl ethers 2, and investigated their applications as
substrate in the electrophilic cyclization reactions to obtain
3-halo-4-chalcogen-2H-benzopyrans 3 (Scheme 1).
Results and Discussion
Heterocycles containing chalcogen play an important role in
organic synthesis, especially in the development of methodolo-
To the preparation of propargyl aryl ethers 1, we chose the
known reaction of phenol with propargyl bromide in the
presence of K2CO3 in acetone at reflux for 24 h.17 To the
introduction of selenophenyl group, we first generated the
lithium acetylide intermediated by reaction of propargyl aryl
ethers 1a-i with 1.1 equiv of n-BuLi, in THF at -78 °C for
1 h, followed by the reaction with an electrophilic selenium
species. By this way, we prepared a number of novel orga-
nochalcogen propargyl aryl ethers, and the generality and scope
of the reaction is summarized in Table 1.
(4) (a) Zhendong, J.; Ying, K. Total synthesis of daurichromenic acid. PCT
Int. Appl. WO 2004058738, 2004. (b) Iwata, N.; Wang, N.; Yao, X.; Kitanaka,
S. J. Nat. Prod. 2004, 67, 1106. (c) Hu, H.; Harrison, T. J.; Wilson, P. D. J.
Org. Chem. 2004, 69, 3782.
(5) Korec, R.; Sensch, K. H.; Zoukas, T. Arzneim.-Forsch. 2000, 50, 122.
(6) (a) Worlikar, S. A.; Kesharwani, T.; Yao, T.; Larock, R. C. J. Org. Chem.
2007, 72, 1347. (b) Yao, T.; Larock, R. C. J. Org. Chem. 2003, 68, 5936. (c)
Zhang, X.; Campo, M. A.; Yao, T.; Larock, R. C. Org. Lett. 2005, 7, 763. (d)
Zhang, X.; Sarkar, S.; Larock, R. C. J. Org. Chem. 2006, 71, 236. (e) Sniady,
A.; Wheeler, K. A.; Dembinski, R. Org. Lett. 2005, 7, 1769. (f) Barluenga, J.;
Trincado, M.; Marco-Arias, M.; Ballesteros, A.; Rubio, E.; Gonzalez, J. M. Chem.
Commun. 2005, 2008. (g) Hessian, K. O.; Flynn, B. L. Org. Lett. 2003, 5, 4377.
(h) Huang, Q.; Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002, 67, 3437. (i)
Yue, D.; Larock, R. C. Org. Lett. 2004, 6, 1037.
Table 1 illustrates the introduction of chalcogen group at
terminal triple bond of the propargyl aryl ethers. Various aryl
(7) (a) Barluenga, J.; Trincado, M.; Rubio, E.; Gonzalez, J. M. Angew. Chem.,
Int. Ed. 2003, 42, 2406. (b) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem.
2006, 71, 62. (c) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 10292.
(d) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Moro, L. Synlett 1999,
1432. (e) Yue, D.; Larock, R. C. J. Org. Chem. 2002, 67, 1905. (f) Kesharwani,
T.; Worlikar, S. A.; Larock, R. C. J. Org. Chem. 2006, 71, 2307. (g) Flynn,
B. L.; Flynn, G. P.; Hamel, E.; Jung, M. K. Bioorg. Med. Chem. Lett. 2001, 11,
2341. (h) Knight, D. W.; Redfern, A. L.; Gilmore, J. J. Chem. Soc., Perkin Trans.
1 2002, 622.
(8) (a) Freudendahl, D. M.; Shahzad, S. A.; Wirth, T. Eur. J. Org. Chem.
2009, 1649. (b) In Organoselenium Chemistry; Wirth, T., Ed.; Topics in Current
Chemistry 208; Springer-Verlag: Heidelberg, 2000. (c) Krief, A. In Compre-
hensiVe Organometallic Chemistry II; Abel, E. V., Stone, F. G. A., Wilkinson,
G., Eds.; Pergamon Press: New York, 1995; Vol. 11, Chapter 13. (d) Paulmier,
C. In Selenium Reagents and Intermediates in Organic Synthesis; Baldwin, J. E.,
Ed.; Organic Chemistry Series 4; Pergamon Press: Oxford, 1986.
(9) Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Chem. ReV. 2004, 104, 6255.
(10) (a) Huguet, J. L. AdV. Chem. Ser. 1967, 345. (b) Sharpless, K. B.; Young,
M. W.; Lauer, R. F. Tetrahedron Lett. 1973, 22, 1979.
(12) Sevrin, M.; Vanende, D.; Krief, A. Tetrahedron Lett. 1976, 30, 2643.
(13) Sevrin, M.; Dumont, W.; Hevesi, L. D.; Krief, A. Tetrahedron Lett.
1976, 30, 2647.
(14) (a) Seebach, D.; Peleties, N. Chem. Ber. 1972, 105, 511. (b) Seebach,
D.; Beck, A. K. Angew. Chem., Int. Ed. Engl. 1974, 13, 806. (c) Reich, H. J.;
Shah, S. K. J. Am. Chem. Soc. 1975, 97, 3250.
(15) Silveira, C. C.; Braga, A. L.; Vieira, A. S.; Zeni, G. J. Org. Chem.
2003, 68, 662.
(16) (a) Barros, O. S. R.; Favero, A.; Nogueira, C. W.; Menezes, P. H.; Zeni,
G. Tetrahedron Lett. 2006, 47, 2179. (b) Prediger, P.; Moro, A. V.; Nogueira,
C. W.; Savegnago, L.; Rocha, J. B. T.; Zeni, G. J. Org. Chem. 2006, 71, 3786.
(c) Barros, O. S. R.; Nogueira, C. W.; Stangherlin, E. C.; Menezes, P. H.; Zeni,
G. J. Org. Chem. 2006, 71, 1552. (d) Zeni, G. Tetrahedron Lett. 2005, 46, 2647.
(e) Panatieri, R. B.; Reis, J. S.; Borges, L. P.; Nogueira, C. W.; Zeni, G. Synlett
2006, 18, 3161. (f) Stein, A. L.; Alves, D.; Rocha, J. T.; Nogueira, C. W.; Zeni,
G. Org. Lett. 2008, 10, 4983. (g) Alves, D.; Luchese, C.; Nogueira, C. W.; Zeni,
G. J. Org. Chem. 2007, 72, 6726.
(17) Bach, P.; Nilsson, K.; Wallberg, A.; Bauer, U.; Hammerland, L. G.;
Peterson, A.; Svensson, T.; Oesterlund, K.; Karis, D.; Boije, M.; Wensbo, D.
Bioorg. Med. Chem. Lett. 2006, 16, 4792.
(11) (a) Reich, H. J. J. Org. Chem. 1975, 40, 2570. (b) Sharpless, K. B.;
Lauer, R. F. J. Am. Chem. Soc. 1972, 94, 7154.
3470 J. Org. Chem. Vol. 74, No. 9, 2009