(q, 4H, J = 7.2 Hz), 3.97–3.87 (m, 6H), 2.44 (t, 4H, J = 7.3 Hz,),
2.04 (m, 4H), 1.18 (t, 6H, J = 7.2 Hz,). 13C NMR (CDCl3, 75 MHz):
d 173.1, 159.1, 133.1, 132.7, 132.6, 132.5, 132.2, 132.1, 132.0, 131.8,
131.7, 131.6, 131.4, 131.3, 131.2, 131.0, 130.9, 128.5, 128.3, 126.7,
126.7, 124.1, 122.0, 115.0, 115.0, 114.6, 92.0, 91.8, 90.0, 87.8, 66.8,
60.5, 39.9, 39.3, 38.7, 30.7, 24.5, 14.2. 31P NMR (CDCl3, 121
MHz): d 35.3 (d, J = 14 Hz), 35.1 (d, J = 14 Hz). MS (FIA)
C69H59O7P2S: m/z: [M-H]+ 1109.
non-linear regression modeling by the Levenberg–Marquardt
method.26
Acknowledgements
This work was supported by the National Research Agency
program CP2D ”FLUOSENSIL”. We are grateful to J.-P. Lefevre
and J.-J. Vachon for their assistance in tuning the single-photon
timing instrument. M.H.H.T. is grateful to the Ministe`re de
l’Education et de la Recherche for a grant (2004–2007). M.P.
thanks the CNRS for a post-doctoral grant (2005–2006).
Ethylene 1,2-bis-4-[ethyl 4-(4-di(phenylene ethynylene)-phe-
noxy)butyrate]diphosphane sulfide DPPS2 (2). To a solution of
ethylene 1,2-bis(4-trimethylsilylethynylphenyl)diphosphane sul-
fide 625,15 (50 mg, 0.085 mmol) in toluene (5 ml) and triethylamine
(2 ml) and 240 mg of 8b (0.55 mmol, 6.5equiv.) are added. The
mixture is degassed under argon and CuI (1.6 mg, 12%mol) and
Pd(PPh3)4 (9.8 mg, 10%mol) are added quickly. The reaction
mixture is then stirred for 20h at 50 ◦C under argon. The
volatiles are evaporated in vacuo and the residue is dissolved in
dichloromethane (10mL). The organic layer is washed with HCl
(10%), dried (Na2SO4), filtrated and the solvents are evaporated
under reduced pressure. The crude product is then purified by flash
chromatography (silica gel: CH2Cl2 100% to CH2Cl2/acetone 1:1)
to afford the desired product DPPES2 (2) (51 mg, 33%) as a
References
1 (a) T. C. Hutchinson and K. M. Meema, in Lead, Mercury, Cadmium
and Arsenic in the Environment, John Wiley, New York 1987; (b) G. H.
Scoullos, M. J. Vonkeman, L. Thorton, Z. Makuch, in Mercury,
Cadmium, Lead: Handbook for Sustainable Heavy Metals Policy and
Regulation (Environment & Policy, V. 31), Kluwer Academic, 2001;
(c) C. J. Coester, Anal. Chem., 2005, 77, 3737–3754; (d) S. D. Richardson
and T. A. Temes, Anal. Chem., 2005, 77, 3807–3838.
2 World Health Organization, Guidelines for drinking-water quality, 3rd
edn, Vol. 1, Geneva, 2004, p. 188.
3 A. P. deSilva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley,
C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97,
1515–1566.
4 B. Valeur and I. Leray, Inorg. Chim. Acta, 2007, 360, 765–774.
5 B. Valeur and I. Leray, Coord. Chem. Rev., 2000, 205, 3–40.
6 E. M. Nolan and S. J. Lippard, Chem. Rev., 2008, 108, 3443–3480 and
references cited therein.
7 (a) I. B. Kim, B. Ergodan, J. N. Wilson and U. H. F. Bunz, Chem. Eur. J.,
2004, 10, 6247–6254; (b) A. Caballero, R. Martinez, V. Lloveras, Ratera,
I. Vidal-Gancedo, J. K. Wurst, A. Tarraga, P. Molina and J. Veiana,
J. Am. Chem. Soc., 2005, 127, 15666–15667; (c) J. Wang and X. Qian,
Chem. Commun., 2006, 109–111; (d) J. D. Winkler, C. M. Bowen and
V. Michelet, J. Am. Chem. Soc., 1998, 120, 3237–3242; (e) R. Metivier,
I. Leray and B. Valeur, Chem. Eur. J., 2004, 10, 4480–4490; (f) R.
Metivier, I. Leray, B. Lebeau and B. Valeur, J. Mater. Chem., 2005, 15,
2965–2973; (g) H. Zheng, Z.-H. Qian, L. Xu, F.-F. Yuan, L.-D. Lan
and J.-G. Xu, Org. Lett., 2006, 8, 859–861; (h) Y. Zhao and Z. Zhong,
J. Am. Chem. Soc., 2006, 128, 9988–9989.
1
brownish solid. H NMR (CDCl3, 300 MHz): d 7.77 (m, 8H),
7.43–7.60 (m, 32H), 6.85 (m, 8H), 4.14 (q, 8H, J = 7.05 Hz), 4.02
(t, 8H, J = 6.08 Hz), 2.72 (m, 4H), 2.51 (t, 8H, J = 7.23 Hz), 2.12
(m, 8H), 1.26 (t, 8H, J = 7.14 Hz). 13C NMR (CDCl3, 75 MHz): d
173.4, 159.4, 133.4, 133.0, 132.1, 132.0, 131.7, 131.3, 127.4, 124.4,
122.1, 115.3, 114.8, 92.6, 92.1, 90.0, 88.1, 67.1, 60.7, 31.0, 25.8,
24.8, 14.5. 31P NMR (CDCl3, 121 MHz): d 44.1. HRMS (TOF
MALDI) calcd for C114H97O12P2S2 [M + H]+ 1783.5891, found.
1783.5864.
Spectroscopic measurements
UV/Vis absorption spectra were recorded on a Varian Cary5E
spectrophotometer and corrected emission spectra were obtained
on a Jobin–Yvon Spex Fluorolog 1681 spectrofluorimeter. The
fluorescence quantum yields were determined by using quinine
sulfate dihydrate in sulfuric acid (0.5 N; UF = 0.54626) as references.
For the emission measurements, the absorbance at the excitation
wavelengths were below 0.1 and so the concentrations were below
10 5 molL-1. The fluorescence intensity decays were obtained by the
single-photon timing method with picosecond laser excitation by
use of a Spectra-Physics setup composed of a titanium sapphire
Tsunami laser pumped by an argon ion laser, a pulse detector,
and doubling (LBO) and tripling (BBO) crystals. Light pulses
were selected by optoaccoustic crystals at the repetition rate of
4 MHz. Fluorescence photons were detected through a long-
pass filter (375 nm) by means of a Hamamatsu MCP R3809U
photomultiplier, connected to a constant-fraction discriminator.
The time-to-amplitude converter was purchased from Tennelec.
Data were analyzed by a nonlinear least-squares method with the
aid of Globals software (Globals Unlimited, University of Illinois
at Urbana-Champaign, Laboratory of Fluorescence Dynamics).
The complexation constants were determined by global analysis
of the evolution of all absorption and/or emission spectra by
using the Specfit Global Analysis System V3.0 for 32-bit Windows
system. This software uses singular value decomposition and
8 (a) A. Ono and H. Togashi, Angew. Chem. Int. Ed., 2004, 43, 4300–
4302; (b) S. Yoon, A. E. Albers, A. P. Wong and C. Chang, J. Am.
Chem. Soc., 2005, 127, 16030–16031; (c) Y. K. Yang, K. J. Yook and
J. Tae, J. Am. Chem. Soc., 2005, 127, 16760–16761; (d) E. M. Nolan,
M. E. Racine and S. J. Lippard, Inorg. Chem., 2006, 45, 2742–2749;
(e) E. M. Nolan and S. J. Lippard, J. Am. Chem. Soc., 2003, 125, 14270–
14271.
9 M. Zhu, M. J. Yuan, X. F. Liu, J. L. Xu, J. Lv, C. S. Huang, H. B.
Liu, Y. L. Li, S. Wang and D. B. Zhu, Org. Lett., 2008, 10, 1481–
1484.
10 O. del Campo, A. Carbayo, J. V. Cuevas, A. Munoz, G. Garcia-Herbosa,
D. Moreno, E. Ballesteros, S. Basurto, T. Gomez and T. Torroba, Chem.
Commun., 2008, 4576–4578.
11 Y. Shiraishi, S. Sumiya, Y. Kohno and T. Hirai, J. Org. Chem., 2008,
73, 8571–8574.
12 M. H. Ha-Thi, V. Souchon, A. Hamdi, R. Metivier, V. Alain, K.
Nakatani, P. G. Lacroix, J. P. Genet, V. Michelet and I. Leray, Chem.
Eur. J., 2006, 12, 9056–9065.
13 M. H. Ha-Thi, M. Penhoat, D. Drouin, M. Blanchard-Desce, V.
Michelet and I. Leray, Chem. Eur. J., 2008, 14, 5941–5950.
14 M. H. Ha-Thi, V. Souchon, M. Penhoat, F. Miomandre, J. P. Genet, I.
Leray and V. Michelet, Lett. Org. Chem., 2007, 4, 185–188.
15 M. H. Ha-Thi, M. Penhoat, V. Michelet and I. Leray, Org. Lett., 2007,
9, 1133–1136.
16 R. Chinchilla and C. Najera, Chem. Rev., 2007, 107, 874–922.
17 P. J. Hajduk, G. Sheppard, D. G. Nettesheim, E. T. Olejniczak, S. B.
Shuker, R. P. Meadows, D. H. Steinman, G. M. Carrera, P. A. Marcotte,
J. Severin, K. Walter, H. Smith, E. Gubbins, R. Simmer, T. F. Holzman,
D. W. Morgan, S. K. Davidsen, J. B. Summers and S. W. Fesik, J. Am.
Chem. Soc., 1997, 119, 5818–5827.
1672 | Org. Biomol. Chem., 2009, 7, 1665–1673
This journal is
The Royal Society of Chemistry 2009
©