Journal of the American Chemical Society
Page 10 of 13
1
2
3
4
5
6
7
8
9
S.; Hiyama, T. Nickelꢀcatalyzed alkenylation and alkylation of
α,β‐unsaturated ketones under mild conditions. Chem. ꢀ Eur. J. 2012,
18, 9511. (b) Shi, Z.; Grohmann, C.; Glorius, F. Mild rhodiꢀ
um(III)‐catalyzed cyclization of amides with α,β‐unsaturated aldeꢀ
hydes and ketones to azepinones: application to the synthesis of the
homoprotoberberine framework. Angew. Chem., Int. Ed. 2013, 52,
5393. (c) Rouquet, G.; Chatani, N. Rutheniumꢀcatalyzed orthoꢀC–H
bond alkylation of aromatic amides with α,βꢀunsaturated ketones via
bidentateꢀchelation assistance. Chem. Sci. 2013, 4, 2201. (d) Kim, J.;
Park, S.ꢀW.; Baik, M.ꢀH.; Chang, S. Complete switch of selectivity in
the C–H alkenylation and hydroarylation catalyzed by iridium: the
role of directing groups. J. Am. Chem. Soc. 2015, 137, 13448. (e)
Zhang, Z.; Han, S.; Tang, M.; Ackermann, L.; Li, J. C–H Alkylations
of (hetero)arenes by maleimides and maleate esters through cobalt(III)
catalysis. Org. Lett. 2017, 19, 3315.
(9) For recent reports on the conjugate addition without directing
groups, see: (a) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Rh(I)ꢀ
catalyzed alkylation of quinolines and pyridines via C−H bond activaꢀ
tion. J. Am. Chem. Soc. 2007, 129, 5332. (b) Sun, Z.ꢀM.; Zhang, J.;
Manan, R. S.; Zhao, P. Rh(I)ꢀcatalyzed olefin hydroarylation with
electronꢀdeficient perfluoroarenes. J. Am. Chem. Soc. 2010, 132, 6935.
(c) Ryu, J.; Cho, S. H.; Chang, S. A versatile rhodium(I) catalyst
system for the addition of heteroarenes to both alkenes and alkynes by
a C–H bond activation. Angew. Chem., Int. Ed. 2012, 51, 3677. (d)
Filloux, C. M.; Rovis, T. Rh(I)–bisphosphineꢀcatalyzed asymmetric,
intermolecular hydroheteroarylation of αꢀsubstituted acrylate derivaꢀ
tives. J. Am. Chem. Soc. 2015, 137, 508. (e) Tran, G.; Hesp, K. D.;
Mascitti, V.; Ellman, J. A. Base‐controlled completely selective linear
or branched rhodium(I)‐catalyzed C−H ortho‐alkylation of azines
without preactivation. Angew. Chem., Int. Ed. 2017, 56, 5899.
(10) (a) Weck, M.; Dunn, A. R.; Matsumoto, K.; Coates, G. W.;
Lobkovsky, E. B.; Grubbs, R. H. Influence of perfluoroarene–arene
interactions on the phase behavior of liquid crystalline and polymeric
materials. Angew. Chem., Int. Ed. 1999, 38, 2741. (b) Sakamoto, Y.;
Suzuki, T.; Miura, A.; Fujikawa, H.; Tokito, S.; Taga, Y. Synthesis,
characterization, and electronꢀtransport property of perfluorinated
phenylene dendrimers. J. Am. Chem. Soc. 2000, 122, 1832. (c)
Nitschke, J. R.; Tilley, T. D. Efficient, highꢀyield route to long, funcꢀ
tionalized pꢀphenylene oligomers containing perfluorinated segments,
and their cyclodimerizations by zirconocene coupling. J. Am. Chem.
Soc. 2001, 123, 10183. (d) Tsuzuki, T.; Shirasawa, N.; Suzuki, T.;
Tokito, S. Color tunable organic lightꢀemitting diodes using penꢀ
tafluorophenyl‐substituted iridium complexes. Adv. Mater. 2003, 15,
1455. (e) Meyer, E. A.; Castellano, R. K.; Diederich, F. Interactions
with aromatic rings in chemical and biological recognition. Angew.
Chem., Int. Ed. 2003, 42, 1210. (f) Zahn, A.; Brotschi, C.; Leumann,
C. J. Pentafluorophenyl–phenyl interactions in biphenyl‐DNA. Chem.
ꢀ Eur. J. 2005, 11, 2125. (g) Müller, K.; Faeh, C.; Diederich, F. Fluoꢀ
rine in pharmaceuticals: looking beyond intuition. Science 2007, 317,
1881. (h) Murphy, A. R.; Fréchet, J. M. J. Organic semiconducting
oligomers for use in thin film transistors. Chem. Rev. 2007, 107, 1066.
(i) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Fluorinated orꢀ
ganic materials for electronic and optoelectronic applications: the role
of the fluorine atom. Chem. Commun. 2007, 1003. (j) Purser, S.;
Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal
chemistry. Chem. Soc. Rev. 2008, 37, 320. (k) Amii, H.; Uneyama, K.
C−F Bond activation in organic synthesis. Chem. Rev. 2009, 109,
2119.
fluoroarenes via activation of C−H bond over C−F bond. J. Am. Chem.
Soc. 2008, 130, 16170. (e) Zhang, X.; Fan, S.; He, C.ꢀY.; Wan, X.;
Min, Q.ꢀQ.; Yang, J.; Jiang, Z.ꢀX. Pd(OAc)2 catalyzed olefination of
highly electronꢀdeficient perfluoroarenes. J. Am. Chem. Soc. 2010,
132, 4506. Allylation: (f) Yao, T.; Hirano, K.; Satoh, T.; Miura, M.
Stereospecific copper‐catalyzed C–H allylation of electron‐deficient
arenes with allyl phosphates. Angew. Chem., Int. Ed. 2011, 50, 2990.
(g) Xie, W.; Chang, S. [Cu(NHC)]‐Catalyzed C−H allylation and
alkenylation of both electron‐deficient and electron‐rich (hetꢀ
ero)arenes with allyl halides. Angew. Chem., Int. Ed. 2016, 55, 1876.
Alkynylation: (h) Wei, Y.; Zhao, H.; Kan, J.; Su, W.; Hong, M. Copꢀ
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
perꢀcatalyzed
direct
alkynylation
of
electronꢀdeficient
polyfluoroarenes with terminal alkynes using O2 as an oxidant. J. Am.
Chem. Soc. 2010, 132, 2522. Alkylation: (i) Xu, S.; Wu, G.; Ye, F.;
Wang, X.; Li, H.; Zhao, X.; Zhang, Y.; Wang, J. Copper(I)‐catalyzed
alkylation of polyfluoroarenes through direct C−H bond functionaliꢀ
zation. Angew. Chem., Int. Ed. 2015, 54, 4669. Amination: (j) Xie,
W.; Yoon, J. H.; Chang, S. (NHC)CuꢀCatalyzed mild C–H amidation
of (hetero)arenes with deprotectable carbamates: scope and mechanisꢀ
tic studies. J. Am. Chem. Soc. 2016, 138, 12605. Carboxylation: (k)
Boogaerts, I. I. F.; Nolan, S. P. Carboxylation of C−H bonds using Nꢀ
heterocyclic carbene gold(I) complexes. J. Am. Chem. Soc. 2010, 132,
8858. Silylation: (l) Elsby, M. R.; Johnson, S. A. Nickelꢀcatalyzed
C–H silylation of arenes with vinylsilanes: rapid and reversible βꢀSi
elimination. J. Am. Chem. Soc. 2017, 139, 9401.
(12) (a) Albéniz, A. C.; Espinet, P.; MartnꢀRuiz, B.; Milstein, D.
Catalytic system for Heck reactions involving insertion into
Pd−(perfluoroꢀorganyl) bonds. J. Am. Chem. Soc. 2001, 123, 11504.
(b) Albéniz, A. C.; Espinet, P.; MartnꢀRuiz, B.; Milstein, D. Catalytic
system for the Heck reaction of fluorinated haloaryls. Organometalꢀ
lics 2005, 24, 3679. (c) Clot, E.; Mégret, C.; Eisenstein, O.; Perutz, R.
N. Exceptional sensitivity of metal−aryl bond energies to orthoꢀ
fluorine substituents: influence of the metal, the coordination sphere,
and the spectator ligands on M−C/H−C bond energy correlations. J.
Am. Chem. Soc. 2009, 131, 7817. (d) Evans, M. E.; Burke, C. L.;
Yaibuathes, S.; Clot, E.; Eisenstein, O.; Jones, W. D. Energetics of
C−H bond activation of fluorinated aromatic hydrocarbons using a
[Tp′Rh(CNneopentyl)] complex. J. Am. Chem. Soc. 2009, 131, 13464.
(13) For recent references of alkoxideꢀsilane systems, see: C–H Si-
lylation: (a) Toutov, A. A.; Liu, W.ꢀB.; Betz, K. N.; Fedorov, A.;
Stoltz, B. M.; Grubbs, R. H. Silylation of C−H bonds in aromatic
heterocycles by an earthꢀabundant metal catalyst. Nature 2015, 518,
80. (b) Toutov, A. A.; Betz, K. N.; Schuman, D. P.; Liu, W.ꢀB.; Fedoꢀ
rov, A.; Stoltz, B. M.; Grubbs, R. H. Alkali metalꢀhydroxideꢀ
catalyzed C(sp)−H bond silylation. J. Am. Chem. Soc. 2017, 139,
1668. (c) Liu, W.ꢀB.; Schuman, D. P.; Yang, Y.ꢀF.; Toutov, A. A.;
Liang, Y.; Klare, H. F. T.; Nesnas, N.; Oestreich, M.; Blackmond, D.
G.; Virgil, S. C.; Banerjee, S.; Zare, R. N.; Grubbs, R. H.; Houk, K.
N.; Stoltz, B. M. Potassium tertꢀbutoxideꢀcatalyzed dehydrogenative
C–H silylation of heteroaromatics: a combined experimental and
computational mechanistic study. J. Am. Chem. Soc. 2017, 139, 6867.
(d) Banerjee, S.; Yang, Y.ꢀF.; Jenkins, I. D.; Liang, Y.; Toutov, A. A.;
Liu, W.ꢀB.; Schuman, D. P.; Grubbs, R. H.; Stoltz, B. M.; Krenske, E.
H.; Houk, K. N.; Zare, R. N. Ionic and neutral mechanisms for C–H
bond silylation of aromatic heterocycles catalyzed by potassium tertꢀ
butoxide. J. Am. Chem. Soc. 2017, 139, 6880. C–X (X = O, S, N)
Bond cleavage: (e) Fedorov, A.; Toutov, A. A.; Swisher, N. A.;
Grubbs, R. H. Lewisꢀbase silane activation: from reductive cleavage
of aryl ethers to selective orthoꢀsilylation Chem. Sci. 2013, 4, 1640. (f)
Toutov, A. A.; Salata, M.; Fedorov, A.; Yang, Y.ꢀF.; Liang, Y.; Cariꢀ
ou, R.; Betz, K. N.; Couzijn, E. P. A.; Shabaker, J. W.; Houk, K. N.;
Grubbs, R. H. A potassium tertꢀbutoxide and hydrosilane system for
ultraꢀdeep desulfurization of fuels. Nat. Energy, 2017, 2, 17008. (g)
Smith, A. J.; Young, A.; Rohrbach, S.; O’Connor, E. F.; Allison, M.;
Wang, H.ꢀS.; Poole, D. L.; Tuttle, T.; Murphy, J. A. Electron‐transfer
(11) For representative references, see: Arylation: (a) Lafrance, M.;
Rowley, C. N.; Woo, T. K.; Fagnou, K. Catalytic intermolecular diꢀ
rect arylation of perfluorobenzenes. J. Am. Chem. Soc. 2006, 126,
8754. (b) Do, H.ꢀQ.; Daugulis, O. Copperꢀcatalyzed arylation and
alkenylation of polyfluoroarene C−H bonds. J. Am. Chem. Soc. 2008,
130, 1128. (c) Simonetti, M.; Perry, G. J. P.; Cambeiro, X. C.; Juliáꢀ
Hernández, F.; Arokianathar, J. N.; Larrosa, I. RuꢀCatalyzed C–H
arylation of fluoroarenes with aryl halides. J. Am. Chem. Soc. 2016,
138, 3596. Alkenylation: (d) Nakao, Y.; Kashihara, N.; Kanyiva, K.
10
ACS Paragon Plus Environment