F
K. A. Robb et al.
Letter
Synlett
Supporting Information
(24) An additional homogeranylarene substrate 12b (see Supple-
mentary Information) was prepared, but did not convert cleanly
into 13b under the standard reaction conditions, indicating that
the arene of 12b is a poor nucleophile compared with 12a. This
disparity is rationalized by the large difference between the
meta (+0.12) and para (–0.27) Hammett constants for the
methoxy group.
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
References and Notes
(25) In addition to nucleophilic ring-opening reactions at carbon,
thiiranium ions are also susceptible to nucleophilic attack at
sulfur. The relative rates of these reactions are dependent on the
substitution patterns of the thiiranium ion; see: Lucchini, V.;
Modena, G.; Pasi, M.; Pasquato, L. J. Org. Chem. 1997, 62, 7018; It
is noted that differences in reactivity probably exist between
thiiranium ions resulting from the trisubstituted alkene 1 (or
12) and the disubstituted alkene 14, although it is unclear how
these differences would impact the overall mechanistic picture.
(26) Hexahydroxanthenes 2a–d; General Procedure
A 50-mL round-bottomed flask equipped with a stirrer bar was
charged with sulfenylating agent 3 (1.01 mmol, 1.01 equiv),
HFIP (10 mL), and substrate 1 (1.0 mmol). Catalyst (S)-4 (0.01
mmol, 0.01 equiv) was added and the mixture was stirred at
25 °C for 12 h. Some white precipitates and/or a color change
were typically observed at longer reaction times. Upon comple-
tion of the reaction [TLC; hexanes–CH2Cl2 (80:20)], the mixture
was diluted with CH2Cl2 (5 mL) and volatile components were
removed by rotary evaporation (30 °C, 15 mm Hg). The crude
product was purified by chromatography [silica gel, hexanes–
CH2Cl2 (gradient elution)] to give a white solid. The product was
triturated in boiling MeOH or EtOH (~1.5 mL) and the mother
liquor was decanted to afford 2 in >99% purity (quantitative 1H
NMR analysis).
(1) Yoder, R. A.; Johnston, J. N. Chem. Rev. 2005, 105, 4730.
(2) Ungarean, C. N.; Southgate, E. H.; Sarlah, D. Org. Biomol. Chem.
2016, 14, 5454.
(3) Samanta, R. C.; Yamamoto, H. J. Am. Chem. Soc. 2017, 139, 1460.
(4) Cochrane, N. A.; Nguyen, H.; Gagne, M. R. J. Am. Chem. Soc. 2013,
135, 628.
(5) Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. Chem. Soc. 2010, 132,
8276.
(6) Schafroth, M. A.; Sarlah, D.; Krautwald, S.; Carreira, E. M. J. Am.
Chem. Soc. 2012, 134, 20276.
(7) Snyder, S. A.; Treitler, D. S.; Schall, A. Tetrahedron 2010, 66,
4796.
(8) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132,
5030.
(9) Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132,
5027.
(10) Fan, L.; Han, C.; Li, X.; Yao, J.; Wang, Z.; Yao, C.; Chen, W.; Wang,
T.; Zhao, J. Angew. Chem. Int. Ed. 2018, 57, 2115.
(11) Tao, Z.; Robb, K. A.; Zhao, K.; Denmark, S. E. J. Am. Chem. Soc.
2018, 140, 3569.
(12) Denmark, S. E.; Hartmann, E.; Kornfilt, D. J. P.; Wang, H. Nat.
Chem. 2014, 6, 1056.
(13) Hartmann, E.; Denmark, S. E. Helv. Chim. Acta 2017, 100,
e1700158.
(14) Bartlett, P. A.; Brauman, J. I.; Johnson, W. S.; Volkmann, R. A.
J. Am. Chem. Soc. 1973, 95, 7502.
(2R,4aR,9aR)-2-[(2,6-Diisopropylphenyl)thio]-5-fluoro-7-
methoxy-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xan-
thene (2a)
(15) Denmark, S. E.; Kornfilt, D. J. P. J. Org. Chem. 2017, 82, 3192.
(16) Kauch, M.; Hoppe, D. Can. J. Chem. 2001, 79, 1736.
(17) Kauch, M.; Hoppe, D. Synthesis 2006, 1578.
(18) An additional phenol 1e (R = Me) was prepared from 5e (R =
Me) in an analogous fashion. Unfortunately, it was discovered
that the 19F NMR resonances of 1e and product 2e overlapped
when HFIP was used as the reaction solvent. As a result, rate
data could not be obtained for this substrate by using this
experimental setup.
(19) Rohbogner, C. J.; Clososki, G. C.; Knochel, P. Angew. Chem. Int. Ed.
2008, 47, 1503.
(20) Lin, W.; Baron, O.; Knochel, P. Org. Lett. 2006, 8, 5673.
(21) Burés, J. Angew. Chem. Int. Ed. 2016, 55, 2028.
(22) Burés, J. Angew. Chem. Int. Ed. 2016, 55, 16084.
(23) Nielsen, C. D.-T.; Burés, J. Chem. Sci. 2019, 10, 348.
White solid; yield: 355.5 mg (75%); 1H NMR (500 MHz, CDCl3):
= 7.33 (t, J = 7.7 Hz, 1 H), 7.18 [d, J = 7.7 Hz, 2 H, HC(19)], 6.52
[dd, J = 12.3, 2.7 Hz, 1 H, HC(11)], 6.41 [br s, 1 H, HC(9)], 3.96
(hept, J = 6.7 Hz, 2 H), 3.73 (s, 3 H), 2.77 (dd, J = 16.7, 5.3 Hz, 1
H), 2.75–2.70 (m, 1 H), 2.69 (dd, J = 12.1, 3.9 Hz, 1 H), 1.97 (dt,
J = 12.7, 2.9 Hz, 1 H), 1.76 (dd, J = 12.6, 5.3 Hz, 1 H), 1.74–1.64
(m, 1 H), 1.61 (dq, J = 14.0, 3.7 Hz, 1 H), 1.48 (td, J = 13.3, 3.6 Hz,
1 H), 1.41 (s, 3 H), 1.26 (d, J = 6.8 Hz, 6 H), 1.23 (s, 3 H), 1.20 (d,
J = 6.9 Hz, 6 H), 1.08 (s, 3 H). 13C NMR (126 MHz, CDCl3): =
154.1, 152.5 (d, JC–F = 10.0 Hz), 152.0 (d, JC–F = 244.4 Hz), 135.3
(d, JC–F = 11.4 Hz), 130.3, 129.2, 124.9 (d, JC–F = 3.2 Hz), 123.9,
109.0 (d, JC–F = 3.0 Hz), 101.3 (d, JC–F = 21.8 Hz), 77.0, 60.9, 55.9,
49.6, 39.9, 38.7, 31.5, 28.9, 26.7, 25.0, 24.1, 23.9 (d, JC–F = 2.7 Hz),
19.7, 16.6.
© 2019. Thieme. All rights reserved. — Synlett 2019, 30, A–F