Total Synthesis of Malyngamides O, P, Q, and R
and sulfuric acid (2 mg, 0.02 mmol). The reaction mixture was
stirred for 30 h at rt, followed by the addition of saturated NaHCO3
solution (1 mL), and extracted with EtOAc (3 × 5 mL). The organic
extracts were dried over Na2SO4, filtered, and concentrated in vacuo.
Flash chromatography of the residue over silica gel (petroleum
ether/EtOAc ) 1:2) afforded pure malyngamide R (4) (15 mg, 52%
yield) and ꢀ-keto ester 36 (10 mg, 36% yield) as a colorless oil.
[R]20D +4 (c 1.0, MeOH) [lit.1d [R]20D +2 (c 0.9, MeOH)]; IR (KBr)
3397, 2929, 1718, 1629, 1460, 1389, 1316, 1164, 1075, 976, 776
and H-13), 1.38-1.39 (m, 2H, H-8), 2.13-2.27 (m, 6H, H-2, H-3
and H-6), 3.07-3.12 (m, 2H, H-3′a and H-7), 3.28 (s, 3H, OCH3,
H-15), 3.68 (s, 3H, OCH3, H-8′), 3.80 (dd, J ) 12.0 and 2.4 Hz,
1H, H-6′′a), 3.87 (s, 3H, OCH3, H-7′′), 3.96 (dd, J ) 14.0 and 5.2
Hz, 1H, H-1′a), 4.12 (dd, J ) 14.0 and 6.8 Hz, 1H, H-1′b), 4.18
(d, J ) 13.6 Hz, 1H, H-3′b), 4.36 (dd, J ) 12.0 and 2.4 Hz, 1H,
H-6′′b), 4.59-4.61 (m, 1H, H-5′′), 5.11 (s, 1H, H-3′′), 5.40-5.44
(m, 2H, H-4 and H-5), 5.95 (br, 1H, NH), 6.04 (s, 1H, H-7′), 6.90
(s, 1H, H-5′); 13C NMR (CDCl3, 100 MHz) δ 14.1 (CH3, C-14),
22.6 (CH2, C-12), 25.3 (CH2, C-9), 28.4 (CH2, C-3), 29.3 (CH2,
C-11), 29.7 (CH2, C-10), 31.8 (CH2, C-13), 33.3 (CH2, C-8), 36.2
(CH2, C-2), 36.3 (CH2, C-6), 36.6 (CH2, C-3′), 37.8 (CH2, C-1′),
56.0 (OCH3, C-8′), 56.4 (OCH3, C-15), 58.7 (OCH3, C-7′′), 59.6
(CH2, C-6′′), 62.4 (CH, C-5′′), 80.7 (CH, C-7), 95.1 (CH, C-3′′),
95.4 (CH, C-5′), 118.3 (CH, C-7′), 127.6 (CH, C-5), 130.6 (CH,
C-4), 135.3 (C, C-2′), 165.7 (C, C-6′), 170.8 (C, C-2′′), 171.6 (C,
C-4′), 172.7 (C, C-1), 176.7 (C, C-4′′); HRMS (ESI) m/z
C29H45ClN2O7Na [M + Na]+ calcd 591.2808, found 591.2804.
1
cm-1; H NMR (CDCl3, 400 MHz) δ 0.85 (t, J ) 6.0 Hz, 3H,
H-14), 1.23-1.32 (m, 10H, 5 × CH2, H-9, H-10, H-11, H-12, and
H-13), 1.37-1.40 (m, 2H, H-8), 2.14-2.31 (m, 6H, H-2, H-3 and
H-6), 2.78/2.82 (s, 3H, NCH3), 2.92 (d, J ) 14.8 Hz, 1H, H-3′a),
3.09-3.11 (m, 1H, H-7), 3.29 (s, 3H, OCH3, H-15), 3.65/3.70 (s,
3H, OCH3, H-8′), 3.79 (d, J ) 14.7 Hz, 1H, H-6′′a), 3.86 (s, 3H,
OCH3, H-7′′), 3.97 (d, J ) 13.6 Hz, 1H, H-1′a), 4.31-4.55 (m,
4H, H-3′b, H-1′b, H-5′′, H-6′′b), 5.08/5.10 (s, 1H, H-3′′), 5.41-5.43
(m, 2H, H-4 and H-5), 6.14/6.16 (s, 1H, H-7′), 6.82/6.96 (s, 1H,
H-5′); 13C NMR (CDCl3, 100 MHz) δ 14.1 (CH3, C-14), 22.6 (CH2,
C-12), 25.3 (CH2, C-9), 28.0 (CH2, C-3), 29.3 (CH2, C-10), 29.8
(CH2, C-13), 31.8 (CH2, C-11), 33.4 (CH2, C-2), 33.4 (CH2, C-8),
33.8 (NCH3), 36.4 (CH2, C-3′), 36.7 (CH2, C-6), 44.7 (CH2, C-1′),
55.7 (OCH3, C-8′), 56.5 (OCH3, C-15), 58.6 (OCH3, C-7′′), 59.2
(CH2, C-6′′), 62.5 (CH, C-5′′), 80.8 (CH, C-7), 95.1 (2 × CH, C-5′
and C-3′′), 119.9 (CH, C-7′), 127.4 (CH, C-5), 130.8 (CH, C-4),
133.5 (C, C-2′), 165.3 (C, C-6′), 170.9 (C, C-4′), 170.9 (C, C-2′′),
173.5 (C, C-1), 176.9 (C, C-4′′); HRMS (ESI) m/z C30H48ClN2O7
[M + H]+ calcd 583.3145, found 583.3150. (The data of 13C NMR
spectrum were identified via following ref 1d, as for 5′′-epi-4.)
According to the preceding procedure, 5′′-epi-34 (21 mg, 0.03
mmol) afforded amide 5′′-epi-4 (9 mg, 53% yield) as a pale yellow
oil. [R]20D -46 (c 1.0, MeOH); IR (KBr) 3398, 2929, 1717, 1630,
According to the preceding procedure, 5′′-epi-37 (20 mg, 0.03
mmol) afforded 5′′-epi-3 (13 mg, 76% yield) as a pale yellow oil.
[R]20D -37 (c 0.4, MeOH); IR (KBr) 3315, 2929, 1718, 1631, 1606,
1
1317, 1215, 1162, 1076, 974, 843 cm-1; H NMR (CDCl3, 400
MHz) 0.85 (t, J ) 6.8 Hz, 3H, H-14), 1.22-1.24 (m, 10H, 5 ×
CH2, H-9, H-10, H-11, H-12, and H-13), 1.39-1.40 (m, 2H, H-8),
2.13-2.26 (m, 6H, H-2, H-3, and H-6), 3.08-3.13 (m, 2H, H-3′a
and H-7), 3.28 (s, 3H, OCH3, H-15), 3.69 (s, 3H, OCH3, H-8′),
3.80 (dd, J ) 12.0 and 2.4 Hz, 1H, H-6′′a), 3.87 (s, 3H, OCH3,
H-7′′), 3.97 (dd, J ) 14.0 and 5.2 Hz, 1H, H-1′a), 4.09-4.34 (m,
2H, H-1′b and H-3′b), 4.36 (dd, J ) 12.0 and 2.4 Hz, 1H, H-6′′b),
4.58-4.60 (m, 1H, H-5′′), 5.11 (s, 1H, H-3′′), 5.40-5.44 (m, 2H,
H-4 and H-5), 5.97 (br, 1H, NH), 6.05 (s, 1H, H-7′), 6.89 (s, 1H,
H-5′); 13C NMR (CDCl3, 100 MHz) δ 14.1 (CH3, C-14), 22.6 (CH2,
C-12), 25.3 (CH2, C-9), 28.4 (CH2, C-3), 29.3 (CH2, C-11), 29.7
(CH2, C-10), 31.8 (CH2, C-13), 33.3 (CH2, C-8), 36.3 (CH2, C-2),
36.4 (CH2, C-6), 36.7 (CH2, C-3′), 37.9 (CH2, C-1′), 56.0 (OCH3,
C-8′), 56.4 (OCH3, C-15), 58.7 (OCH3, C-7′′), 59.8 (CH2, C-6′′),
62.5 (CH, C-5′′), 80.7 (CH, C-7), 95.2 (CH, C-3′′), 95.5 (CH, C-5′),
118.4 (CH, C-7′), 127.8 (CH, C-5), 130.6 (CH, C-4), 135.2 (C,
C-2′), 165.7 (C, C-6′), 170.8 (C, C-2′′), 171.6 (C, C-4′), 172.9 (C,
C-1), 176.7 (C, C-4′′); HRMS (ESI) m/z C29H45ClN2O7Na [M +
Na]+ calcd 591.2808, found 591.2801.
1
1389, 1316, 1248, 1212, 1163, 1097, 975, 844 cm-1; H NMR
(CDCl3, 400 MHz) δ 0.86 (t, J ) 6.0 Hz, 3H, H-14), 1.23-1.30
(m, 10H, 5 × CH2, H-9, H-10, H-11, H-12, and H-13), 1.38-1.40
(m, 2H, H-8), 2.14-2.32 (m, 6H, H-2, H-3, and H-6), 2.78/2.83
(s, 3H, NCH3), 2.94 (d, J ) 14.8 Hz, 1H, H-3′a), 3.09-3.12 (m,
1H, H-7), 3.29 (s, 3H, OCH3, H-15), 3.65/3.70 (s, 3H, OCH3, H-8′),
3.79 (d, J ) 12.0 Hz, 1H, H-6′′a), 3.86 (s, 3H, OCH3, H-7′′), 3.98
(d, J ) 13.6 Hz, 1H, H-1′a), 4.30-4.55 (m, 4H, H-3′b, H-1′b, H-5′′,
H-6′′b), 5.09/5.10 (s, 1H, H-3′′), 5.40-5.45 (m, 2H, H-4 and H-5),
6.14/6.16 (s, 1H, H-7′), 6.82/6.96 (s, 1H, H-5′); 13C NMR (CDCl3,
100 MHz) δ 14.1 (CH3, C-14), 22.6 (CH2, C-12), 25.3 (CH2, C-9),
28.1 (CH2, C-3), 29.3 (CH2, C-10), 29.8 (CH2, C-13), 31.8 (CH2,
C-11), 33.4 (CH2, C-2), 33.5 (CH2, C-8), 33.9 (NCH3), 36.4 (CH2,
C-3′), 36.7 (CH2, C-6), 44.7 (CH2, C-1′), 55.7 (OCH3, C-8′), 56.5
(OCH3, C-15), 58.6 (OCH3, C-7′′), 59.3 (CH2, C-6′′), 62.5 (CH,
C-5′′), 80.8 (CH, C-7), 95.1 (CH, C-3′′), 95.2 (CH, C-5′), 119.8
(CH, C-7′), 127.5 (CH, C-5), 130.8 (CH, C-4), 133.6 (C, C-2′),
165.3 (C, C-6′), 170.9 (C, C-4′), 170.9 (C, C-2′′), 173.5 (C, C-1),
176.9 (C, C-4′′); HRMS (ESI) m/z C30H48ClN2O7 [M + H]+ calcd
583.3145, found 583.3148.
Acknowledgment. The authors are grateful to the National
Basic Research Program (973 Program) of China (Grant No.
2007CB108903) and the National Natural Science Foundation of
China (Grant Nos. 20621091 and 20872055) for continuing
financial support. We also gratefully acknowledge Professor Hak-
Fun Chow, The Chinese University of Hong Kong, for his helpful
guidance in revising the manuscript.
Supporting Information Available: Experimental procedures;
1
E,(7S)-N-{(2Z,4E)-2-(Chloromethylene)-4-methoxy-6-oxo-[(5S)-
hydroxymethyl-4-methoxy-2-oxo-1H-pyrrol-1(5H)-yl]-4-hexenyl}-
7-methoxytetradec-4-enamide and E,(7S)-N-{(2Z,4E)-2-(Chloro-
methylene)-4-methoxy-6-oxo-[(5R)-hydroxymethyl-4-methoxy-2-
oxo-1H-pyrrol-1(5H)-yl]-4-hexenyl}-7-methoxytetradec-4-enam-
ide [Malyngamide Q (3)1d and 5′′-epi-3]. To a stirred solution of
enol methyl ether 37 (27 mg, 0.04 mmol) in CH3CN (1 mL) was
added Mg(ClO4)2 (4 mg, 0.02 mmol). The reaction mixture was
heated to 50 °C for 10 h, then cooled to rt and diluted with NaHCO3
(5 drops), then the solvent was concentrated in vavuo. Flash
chromatography of the residue over silica gel (petroleum ether/
EtOAc ) 1:4) afforded malyngamide Q (3) (18 mg, 78% yield) as
a colorless oil. [R]20 +4.5 (c 1.0, MeOH) [lit.1d [R]20 +2.1 (c
list of spectral data for other compound; comparison of H and
13C NMR spectral data for malyngamides O and P (isolated 1 and
2, synthetic 1 and 2); 1H NMR spectral data for malyngamides Q
and R (isolated 3 and 4, synthetic 3 and 4) and 5′′-epi-3 and 5′′-
epi-4; 13C NMR spectral data for malyngamides Q and R (isolated
1
3 and 4, synthetic 3 and 4) and 5′′-epi-3 and 5′′-epi-4; H, 13C
NMR, and DEPT 135 spectra of compounds 12, 13, 9, 6, 14, 15,
17, 18, 2, 1, (S)-21, (R)-21, (S)-8, (R)-8, 22, 23, 5′′-epi-23, 24, 26,
27, 28, 29, 30, 33, 5′′-epi-33, 34, 5′′-epi-34, 35, 5′′-epi-35, 4, 4
(NOE), 5′′-epi-4, 37, 5′′-epi-37, 3, and 5′′-epi-3; comparison of
1H and 13C NMR spectra for malyngamides Q and R (isolated 3
and 4, synthetic 3 and 4) and 5′′-epi-3 and 5′′-epi-4. This material
D
D
0.8, MeOH)]; IR (KBr) 3314, 2928, 1718, 1632, 1318, 1214, 1163,
975, 776 cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.85 (t, J ) 6.8 Hz,
3H, H-14), 1.23-1.25 (m, 10H, 5 × CH2, H-9, H-10, H-11, H-12,
JO9003103
J. Org. Chem. Vol. 74, No. 11, 2009 4157