would be highly desirable, in that it would facilitate our
understanding of their biological roles.
Stereoselective Synthesis of r(2,9) Di- to
Tetrasialic Acids, Using a 5,4-N,O-Carbonyl
Protected Thiosialoside
The synthesis of R-linked sialic acid derivatives represents
one of the most difficult and challenging processes in the
chemical synthesis of oligosaccharides.6 The carboxyl group at
the C1 position reduces the reactivity of the anomeric position
toward glycosidation. The lack of a participating auxiliary
adjacent to the anomeric center makes it difficult to form
thermodynamically and kinetically glycosylation-disfavored
R-sialosides and promotes ꢀ-elimination with the production
of a glycal. Acetonitrile and propionitrile are frequently used
as effective solvents in direct R-sialylations because these
solvents block the ꢀ face of the intermediate oxonium cation,
thus promoting R-selective sialylation.7 The nitrile-promoted
R-sialylation is more efficient when secondary alcohols are used
in the glycosylation compared to primary alcohols. Several
reports have appeared regarding the synthesis of R(2,9) disialic
acid based on nitrile-promoted R-sialylation.8 The 8,9 diols were
found to be effective acceptors for R(2,9) sialylation reactions.8b
The conversion of the acetamide group at the C5 position of
the sialyl donor to N,N-diacetyl, azido, N-TFA, N-Troc, N-Fmoc,
N-trichloroacetyl, and N-phthalimide groups has also recently
been reported to be effective for improving the reactivity of
the sialyl donor toward glycosidation.9,10 These donors undergo
R-sialylation in nitrile solvents. Wong and co-workers reported
on the synthesis of protected R(2,9) tetrasialic acids using
5-azido sialyl phosphates.10b Lin and co-workers successfully
prepared a protected R(2,9) pentasialic acid based on an iterative
glycosidation strategy using an N-TFA protected sialyl donor.10f
However, although dimerization proceeded in excellent yield
and selectivity, the formation of tetra- and trimers as donors
resulted in a significant reduction in R-selectivity. We recently
reported on a new and effective method for R-sialylation using
the 5,4-N,O-carbonyl protected sialyl donor.11 The donors
undergo R-sialylation and a nitrile solvent is not required in
Hiroshi Tanaka,* Yuji Nishiura, and Takashi Takahashi*
Department of Applied Chemistry, Graduate School of
Science and Engineering, Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan
thiroshi@apc.titech.ac.jp; ttak@apc.titech.ac.jp
ReceiVed January 28, 2009
An efficient stereoselective synthesis of R(2,9) tetra- to
disialic acids 1-3, using the 5,4-N,O-carbonyl protected
thiosialoside 4, is described. The cyclic protecting group was
effective for R-sialylation without the need for acetonitrile
as the solvent. The donor 4 enabled the formation of a
tetramer in excellent yield and selectivity. Deprotection of
the cyclic protecting groups of the protected di- to tetrasialica
acids proceeded smoothly to give the fully deprotected R(2,9)
tetra- to disialic acids 1-3.
(6) (a) Boons, G.-J.; Demchenko, A. V. Chem. ReV. 2000, 100, 4539–4565.
(b) Ando, H.; Imanura, A. Trends Glycosci. Glycotechnol. 2004, 16, 293–303.
(7) (a) Murase, T.; Ishida, H.; Kiso, M.; Hasegawa, A. Carbohydr. Res. 1988,
184, c1-c4. (b) Hasegawa, A.; Nagahama, T.; Ohki, H.; Hotta, K.; Ishida, H.;
Kiso, M. J. Carbohydr. Chem. 1991, 10, 493–498.
Sialic acids are a family of the most complex monosaccharide
units in naturally occurring oligosaccharides, and are frequently
located at the nonreducing ends of oligosaccharides.1 Recent
progress in glycobiology suggests that R(2,8) and R(2,9) di/
oligosialic and polysialic acids may play important roles in
biological events that occur on the cell surface.2 The R(2,9)
disialic acid unit is attached to lactosaminoglycan in human
teratocarcinoma cells (PA1).3 The R(2,9) polysialic acids have
been reported to be present in C-1300 mouse nurobrastoma cells
(NB41A3).4 In addition, a glycoprotein carrying R(2,9) poly-
sialic acids has been identified in sea urchin sperm flagella.5 A
straightforward chemical synthesis of these oligosaccharides
(8) (a) Ogawa, T.; Sugimoto, M. Carbohydr. Res. 1984, 128, c1-c4. (b)
Shimizu, C.; Achiwa, K. Carbohydr. Res. 1987, 166, 314–316. (c) Okamoto,
K.; Kondo, T.; Goto, T. Tetrahedron Lett. 1986, 27, 5229–5232. (d) Okamoto,
K.; Kondo, T.; Goto, T. Tetrahedron 1988, 44, 1291–1298. (e) Hasegawa, A.;
Ogawa, M.; Ishida, H.; Kiso, M. J. Carbohydr. Chem. 1990, 9, 393–414. (f)
Demchenko, A. V.; Boons, G. J. Chem.sEur. J. 1999, 5, 1278–1283. (g) Lu,
K.-C.; Tseng, S.-Y.; Lin, C.-C. Carbohydr. Res. 2002, 337, 755–760. (h) Ando,
H.; Koike, Y.; Ishida, H.; Kiso, M. Tetrahedron Lett. 2003, 44, 6883–6886.
(9) De Meo, C.; Priyadarshani, U. Carbohydr. Res. 2008, 343, 1540–1552.
(10) (a) Demchenko, A. V.; Boons, G.-J. Tetrahedron Lett. 1998, 39, 3065–
3068. (b) Yu, C.-S.; Niikura, K.; Lin, C.-C.; Wong, C.-H. Angew. Chem., Int.
Ed. 2001, 40, 2900–2903. (c) De Meo, C.; Demchenko, A. V.; Boons, G.-J. J.
Org. Chem. 2001, 66, 5490–5497. (d) Ando, H.; Koike, Y.; Ishida, H.; Kiso, M.
Tetrahedron Lett. 2003, 44, 6883–6886. (e) Adachi, M.; Tanaka, H.; Takahashi,
T. Synlett 2004, 609-614. (f) Lin, C.-C.; Huang, K. T.; Lin, C.-C. Org. Lett.
2005, 7, 4169–4172. (g) Takeda, Y.; Horito, S. Carbohydr. Res. 2005, 340, 211–
220. (h) Tanaka, H.; Nishiura, Y.; Adachi, M.; Takahashi, T. Heterocycles 2006,
67, 107–112. (i) Tanaka, K.; Goi, T.; FukaseK. Synlett 2005, 2958-2962. (j)
Crich, D.; Wenju, L. Org. Lett. 2006, 8, 959–962. (k) Hanashima, S.; Castagner,
B.; Esposito, D.; Nokami, T.; Seeberger, P. H. Org. Lett. 2007, 9, 1777–1779.
(11) (a) Tanaka, H.; Nishiura, Y.; Takahashi, T. J. Am. Chem. Soc. 2006,
128, 7124–7125. (b) Tanaka, H.; Nishiura, Y.; Takahashi, T. J. Am. Chem. Soc.
2008, 130, 17244–17245.
(1) Angat, T.; Varki, A. Chem. ReV. 2002, 102, 439–470.
(2) Sato, C.; Kitajima, K. Trends Glycosci. Glycotechnol. 1999, 11, 371–
390.
(3) Fukuda, M. N.; Dell, A.; Oates, J. E.; Fukuda, M. J. Biol. Chem. 1985,
260, 6623–6632.
(4) Inoue, S.; Poongodi, G. L.; Suresh, N.; Jennings, H. J.; Inoue, Y. J. Biol.
Chem. 2003, 278, 8541–8546.
(5) Miyata, S.; Sato, C.; Kumita, H.; Toriyama, M.; Vacquier, V. D.; Kitajima,
K. Glycobiology 2006, 16, 1229–1241.
10.1021/jo900176e CCC: $40.75
Published on Web 05/04/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 4383–4386 4383