SOBENINA et al.
1502
4. Trofimov, B.A., Mikhaleva, A.I., Vasiltsov, A.M.,
Schmidt, E.Yu., Tarasova, O.A., Morozova, L.V.,
Sobenina, L.N., Preiss, Th., and Henkelman, J.,
Synthesis, 2000, p. 1125.
ed, washed with water, and dried over magnesium
sulfate. Removal of the solvent gave 0.54 g (47%) of
oxime II. The dimethyl sulfoxide solution was treated
as described above in a to isolate 0.44 g (38%) of
oxime II and 0.05 g (5%) of pyrrole III. IR spectrum
of II, ν, cm–1: 2922, 2862, 2820, 1639, 1609, 1546,
1524, 1481, 1443, 1369, 1319, 1283, 1231, 1202,
1183, 1076, 1003, 969, 947, 881, 845, 821, 787, 724,
5. Vasil’tsov, A.M., Shmidt, E.Yu., Mikhaleva, A.I., Zai-
tsev, A.B., Tarasova, O.A., Afonin, A.V., Toryashino-
va, D.-S.D., Il’icheva, L.N., and Trofimov, B.A., Russ.
J. Org. Chem., 2001, vol. 37, p. 334.
6. Sohlberg, K., Leary, S.P., Owen, N.L., and Trofi-
1
689, 583, 558, 506, 483. H NMR spectrum (CDCl3),
δ, ppm: 2.25 s (3H, Me), 2.96 s (6H, Me), 4.11 d (1H,
HB, JBX = 15.0 Hz), 4.64 d (1H, HA, JAX = 7.4 Hz),
mov, B.A., Vibr. Spectrosc., 1997, vol. 13, p. 227.
7. Shagun, V.A., Sinegovskaya, L.M., Toryashinova, D.-
S.D., Tarasova, O.A., and Trofimov, B.A., Izv. Ross.
Akad. Nauk, Ser. Khim., 2001, p. 732.
6.65 d (2H, Harom, J = 8.9 Hz), 6.99 d.d (1H, HX, JAX
=
7.4 Hz, JBX = 15.0 Hz), 7.57 d (2H, Harom, J = 8.9 Hz).
13C NMR spectrum (CDCl3), δC, ppm: 12.5, 40.2, 87.8,
111.5, 122.5, 128.2, 151.1, 152.8, 156.8. 15N NMR
spectrum (CDCl3), δN, ppm: –15.0 (NO), –328.4
(NMe2). Found, %: C 70.74; H 8.00; N 13.55.
C12H16N2O. Calculated, %: C 70.56; H 7.89; N 13.71.
8. Afonin, A.V., Ushakov, I.A., Zinchenko, S.V., Taraso-
va, O.A., and Trofimov, B.A., Magn. Reson. Chem.,
2000, vol. 38, p. 994.
9. Rieth, R.D., Mankad, N.P., Calimano, E., and
Salighi, J.P., Org. Lett., 2004, vol. 6, p. 3981.
10. Guizzardi, B., Mella, M., Fagnoni, M., and Albini, A.,
Tetrahedron, 2000, vol. 56, p. 9383.
2-(4-Dimethylaminophenyl)-1H-pyrrole (III).
A solution of 0.52 g (2.55 mmol) of O-vinyloxime II
in 30 ml of DMSO was heated for 1 h at 120°C. The
mixture was cooled to room temperature and diluted
with 150 ml of water, and the precipitate was filtered
off, dried in air, and purified by sublimation. Yield
0.42 g (89%), light yellow crystals, mp 180°C. IR
spectrum, ν, cm–1: 3420, 2921, 2887, 2801, 1614,
1597, 1517, 1481, 1441, 1323, 1227, 1193, 1168, 1125,
1062, 1033, 947, 881, 818, 789, 711, 589, 546.
1H NMR spectrum (CDCl3), δ, ppm: 2.93 s (6H, Me),
6.24 d.d (1H, 4-H, J = 2.4, 6.0 Hz), 6.33 m (1H, 3-H),
6.71 d (2H, Harom, J = 8.9 Hz), 6.75 m (1H, 5-H),
7.33 d (2H, Harom, J = 8.9 Hz), 8.33 br.s (1H, NH).
13C NMR spectrum (CDCl3), δC, ppm: 40.6, 103.8,
109.6, 112,8, 117.4, 121.8, 125.0, 132.7, 149.0. Found,
%: C 77.14; H 7.36; N 14.97. C12H14N2. Calculated, %:
C 77.38; H 7.58; N 15.04.
11. Zaitsev, A.B., Meallet-Renault, R., Schmidt, E.Yu., Mi-
khaleva, A.I., Badre, S., Dumas, C., Vasiltsov, A.M.,
Zorina, N.V., and Pansu, R.B., Tetrahedron, 2005,
vol. 61, p. 2683.
12. Krivdin, L.B., Kalabin, G.A., Nesterenko, R.N., and
Trofimov, B.A. Tetrahedron Lett., 1984, vol. 25,
p. 4817; Krivdin, L.B., Shcherbakov, V.V., and Kala-
bin, G.A., Zh. Org. Khim., 1986, vol. 22, p. 342.
13. Barone, V., Peralta, J.E., Contreras, R.H., Sosnin, A.V.,
and Krivdin, L.B., Magn. Reson. Chem., 2001, vol. 39,
p. 600; Krivdin, L.B., Zinchenko, S.V., Shcherba-
kov, V.V., Kalabin, G.A., Contreras, R.H., Tufró, M.F.,
Ruiz de Azúa, M.C., and Giribet, C.G., J. Magn. Reson.,
1989, vol. 84, p. 1; Krivdin, L.B., Zinchenko, S.V., Ka-
labin, G.A., Facelli, J.C., Tufró, M.F., Contreras, R.H.,
Denisov, A.Yu., Gavrilyuk, O.A., and Mamatyuk, V.I.,
J. Chem. Soc., Faraday Trans., 1992, vol. 88, p. 2459.
14. Krivdin, L.B., Scherbina, N.A., and Istomina, N.V.,
Magn. Reson. Chem., 2005, vol. 43, p. 435; Kriv-
din, L.B., Larina, L.I., Chernyshev, K.A., and Rozen-
tsveig, I.B., Magn. Reson. Chem., 2005, vol. 43, p. 937;
Krivdin, L.B. and Nedolya, N.A., Tetrahedron Lett.,
2005, vol. 46, p. 7367; Krivdin, L.B., Larina, L.I.,
Chernyshev, K.A., and Rulev, A.Yu., Magn. Reson.
Chem., 2006, vol. 44, p. 178; Krivdin, L.B., Larina, L.I.,
Chernyshev, K.A., and Keiko, N.A., Aust. J. Chem.,
2006, vol. 44, p. 178.
This study was performed under financial support
by the Russian Foundation for Basic Research (project
no. 08-03-00021).
REFERENCES
1. Trofimov, B.A., Advances in Heterocyclic Chemistry,
Katritzky, A.R., Ed., San Diego: Academic, 1990, vol. 51,
p. 177.
15. Sauer, S.P.A., J. Phys. B, 1997, vol. 30, p. 3773;
Enevoldsen, T., Oddershede, J., and Sauer, S.P.A.,
Theor. Chem. Acc., 1998, vol. 100, p. 275.
2. Trofimov, B.A., Pyrroles, Jones, R.A., Ed., New York:
Wiley, 1992, vol. 2, p. 131.
3. Trofimov, B.A., Schmidt, E.Yu., Mikhaleva, A.I., Vasil-
tsov, A.M., and Afonin, A.V., Mendeleev Commun., 2000,
p. 29.
16. Dunning, T.H., Jr., J. Chem. Phys., 1989, vol. 90,
p. 1007; Kendall, R.A., Dunning, T.H., Jr., and Harri-
son, R.J., J. Chem. Phys., 1992, vol. 96, p. 6796;
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 44 No. 10 2008