TABLE 2. Spectroscopic Characteristics of Compounds 4a-f, 5a-f
Com-
pound
IR spectrum, ν, cm-1
1Н NMR spectrum, δ, ppm (J, Hz)*
НС=О
С=О
О–Н
4a
4b
4c
4d
4e
4f
1680
1865
1690
1685
1680
1685
1675
1745
3.94 (3Н, s, СН3О); 7.41-7.43 (1Н, m, Н Ar);
7.52-7.54 (2Н, m, Н Ar); 7.96 (2Н, d, J = 8.0, Н Ar);
9.20 (1Н, s, Н-5); 10.29 (1Н, s, СН=О)
1740
1735
1745
1745
1740
1695
3.95 (3Н, s, СН3О); 7.71 (2Н, d, J = 8.4, Н Ar);
7.96 (2Н, d, J = 8.4, Н Ar); 9.27 (1Н, s, Н-5);
10.29 (1Н, s, СН=О)
2.22 (3Н, s, СН3); 3.92 (3Н, s, СН3О);
7.37-7.45 (4Н, m, Н Ar), 8.72 (1Н, s, Н-5),
10.30 (1Н, s, СН=О)
2.37 (3Н, s, СН3); 3.94 (3Н, s, СН3О);
7.31 (2Н, d, J = 6.0, Н Ar); 7.83 (2Н, d, J = 6.0, Н Ar);
9.13 (1Н, s, Н-5); 10.28 (1Н, s, СН=О)
3.88 (3Н, s, СН3О); 3.95 (3Н, s, СН3О);
8.12 (2Н, d, J = 5.9, Н Ar); 8.16 (2Н, d, J = 5.9, Н Ar);
9.35 (1Н, s, Н-5); 10.28 (1Н, s, СН=О)
3.97 (3Н, s, СН3О); 7.52-7.54 (2Н, m, Н Ar);
7.96-8.13 (4Н, m, Н Ar); 8.54 (1Н, s, Н Ar);
9.34 (1Н, s, Н-5); 10.32 (1Н, s, СН=О)
5a
2540-285
7.40-7.43 (1Н, m, Н Ar); 7.51-7.55 (2Н, m, Н Ar);
7.96 (2Н, d, J = 7.5, Н Ar); 9.15 (1Н, s, Н-5);
10.33 (1Н, s, СН=О)
5b
5c
5d
1680
1680
1680
1700
1705
1700
2560-2880 7.73 (2Н, d, J = 8.5, Н Ar); 7.91 (2Н, d, J = 8.5, Н Ar);
9.14 (1Н, s, Н-5); 10.29 (1Н, s, СН=О)
2550-2850 2.20 (3Н, s, СН3); 7.32-7.44 (4Н, m, Н Ar);
8.86 (1Н s, Н-5); 10.24 (1Н, s, СН=О)
2540-2870 2.37 (3Н, s, СН3); 7.32 (2Н, d, J = 8.0, Н Ar);
7.83 (2Н, d, J = 8.0, Н Ar); 9.08 (1Н, s, Н-5);
10.32 (1Н, s, СН=О)
5e
5f
1685
1675
1705
1705
2570-2860 8.10 (2Н, d, J = 6.0, Н Ar), 8.16 (2Н, d, J = 6.0, Н Ar);
9.31 (1Н, s, Н-5); 10.25 (1Н, s, СН=О)
2540-2890 7.52-7.56 (2Н, m, Н Ar); 7.95-8.13 (4Н, m, Н Ar),
8.53 (1Н, s, Н Ar); 9.28 (1Н, s, Н-5);
10.36 (1Н, s, СН=О)
_______
* Signals for the carboxylic group protons of acids 5a-f were not observed
due to exchange with water present in the DMSO-d6.
Hydrolysis of the latter gives the target aldehydes 4a-f in 74-81% yields. It should also be noticed that, in contrast
to the 4-nitro- and 2,4-dinitrophenylhydrazones of the alkyl pyruvates [4], compounds 3a-f can be used with a 2.5
fold rather than 8 fold excess of POCl3 and reaction time is shortened from 4 to 2 h.
Since a carboxyl function is more acceptable than an ester for subsequent modification the esters 4a-f
were converted using basic hydrolysis to the acids 5a-f in close to quantitative yields. Moreover, in the case of
compound 4e the aryl substituent ester group is also hydrolyzed to form the diacid 5e.
The composition of esters 4a-f and acids 5a-f was in agreement with the results of elemental analysis
(Table 1) and the structure with IR and 1H NMR spectroscopic data (Table 2). The IR spectra of compounds 4, 5
show aldehyde absorption bands in the range 1675-1680 cm-1. The ester C=O bond of esters 4 absorbs at
1735-1745 cm-1 and the carboxyl group of acids 5 at 1695-1705 cm-1. The broad absorption band for the OH
1
group in the range 2540-2890 cm-1 suggests a dimer structure for acids 5a-f in the solid state. The H NMR
spectra of compounds 4 and 5 show an aldehyde proton at 10.24-10.36 ppm and an H-5 pyrazole proton at
9.08-9.35 ppm. An exclusion is found in compounds 4c and 5c in which these protons are seen at 8.72 and 8.86
ppm respectively due to the shielding effect of the methyl group in the o-position of the phenyl substituent.
1466