Journal of the American Chemical Society
ARTICLE
of unspecific adsorption and their stability, proves their broad
potential as selective biological targeting tools. The successfully
combined pre- and postfunctionalization of fluorescent oligomer
nanoparticles represents a novel opportunity to apply these versa-
tilenanoparticleswithreadilytailored opticalproperties to imaging
applications in biology and medicine.
Pu, K.-Y.; Liu, B.; Bazan, G. C.Chem. Mater. 2011, 23, 501–515. (i) Phillips,
R. L.; Kim, I.-B.; Tolbert, L. M.; Bunz, U. H. F. J. Am. Chem. Soc. 2008,
130, 6952–6954. For reviews on π-conjugated systems with biomolecules
to control self-assembly, see:(j) Jatsch, A.; Schillinger, E.-K.; Schmid, S.;
B€auerle, P. J. Mater. Chem. 2010, 20, 3563–3578. (k) Ruiz-Carretero, A.;
Janssen, P. G. A.; Kaeser, A.; Schenning, A. P. H. J. Chem. Commun. 2011,
47, 4340–4347.
(11) (a) Wu, C.; Schneider, T.; Zeigler, M.; Yu, J.; Schiro, P. G.;
Burnham, D. R.; McNeill, J. D.; Chiu, D. T. J. Am. Chem. Soc. 2010,
132, 15410–15417. (b) Wu, C.; Jin, Y.; Schneider, T.; Burnham, D. R.;
Smith, P. B.; Chiu, D. T. Angew. Chem., Int. Ed. 2010, 49, 9436–9440.
(12) Wu, C.; Hansen, S. J.; Hou, Q.; Yu, J.; Zeigler, M.; Jin, Y.;
Burnham, D. R.; McNeill, J. D.; Olson, J. M.; Chiu, D. T. Angew. Chem.,
Int. Ed. 2011, 50, 3430–3434.
’ ASSOCIATED CONTENT
S
Supporting Information. Materials, methods, detailed
b
experimental procedures (synthesis and biological assays), com-
pound characterization, including copies of NMR spectral data
and supplementary figures. This material is available free of
(13) Kim, B.-S.; Hong, D.-J.; Bae, J.; Lee, M. J. Am. Chem. Soc. 2005,
127, 16333–16337.
(14) Ryu, J.-H.; Lee, E.; Lim, Y.-beom; Lee, M. J. Am. Chem. Soc.
2007, 129, 4808–4814.
’ AUTHOR INFORMATION
(15) Abbel, R.; van der Weegen, R.; Meijer, E. W.; Schenning, A. P.
H. J. Chem. Commun. 2009, 1697–1699.
(16) Abbel, R.; van der Weegen, R.; Pisula, W.; Surin, M.; Leclꢁere, P.;
Lazzaroni, R.; Meijer, E. W.; Schenning, A. P. H. J. Chem.—Eur. J. 2009,
15, 9737–9746.
(17) Zalipsky, S. Adv. Drug Delivery Rev. 1995, 16, 157–182.
(18) (a) Caliceti, P.; Veronese, F. M. Adv. Drug Delivery Rev. 2003,
55, 1261–1277. (b) Karakoti, A. S.; Das, S.; Thevuthasan, S.; Seal, S.
Angew. Chem., Int. Ed. 2011, 50, 1980–1994.
(19) M€uller, M. K.; Brunsveld, L. Angew. Chem., Int. Ed. 2009, 48,
2921–2924.
Corresponding Author
a.p.h.j.schenning@tue.nl; l.brunsveld@tue.nl
’ ACKNOWLEDGMENT
We thank Dr. Pol Besenius for help with TEM studies and Ralf
Bovee for MALDI-ToF MS measurements. This research has
been made possible by a ERC grant 204554ꢀSupraChemBio and
The Netherlands Foundation for Scientific Research (NWO) by a
VICI grant.
(20) Ryu, J.-H.; Hong, D.-J.; Lee, M. Chem. Commun. 2008,
1043–1054.
’ REFERENCES
(21) Karlsson, K. A. Biochem. Soc. Trans. 1999, 27, 471–474.
(22) Concanavalin A as a tool, Bittiger, H.; Schnebli, H. P., Ed.; John
Wiley & Sons: New York, 1976.
(23) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596–2599. (b) Tornøe, C. W.;
Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064.
(24) Kasai, H.; Nalwa, H. S.; Oikawa, H.; Okada, S.; Matsuda, H.;
Minami, N.; Kakuta, A.; Ono, K.; Mukoh, A.; Nakanishi, H. Jpn. J. Appl.
Phys. 1992, 31, L1132–L1134.
(1) (a) Davis, M. E.; Chen, Z.; Shin, D. M. Nat. Rev. Drug Discovery
2008, 7, 771–782. (b) Subbiah, R.; Veerapandian, M.; Yun, K. S. Curr.
Med. Chem. 2010, 17, 4559–4577. (c) Shi, J.; Votruba, A. R.; Farokhzad,
O. C.; Langer, R. Nano Lett. 2010, 10, 3223–3230.
(2) (a) Zhou, Y.; Drummond, D. C.; Zou, H.; Hayes, M. E.; Adams,
G. P.; Kirpotin, D. B.; Marks, J. D. J. Mol. Biol. 2007, 371, 934–947. (b)
Montet, X.; Funovics, M.; Montet-Abou, K.; Weissleder, R.; Josephson,
L. J. Med. Chem. 2006, 49, 6087–6093.
(3) Bangham, A. D.; Horne, R. W. J. Mol. Biol. 1964, 8, 660–668.
(4) (a) Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H.
Nat. Mater. 2005, 4, 435–446. (b) Zrazhevskiy, P.; Sena, M.; Gao, X.
Chem. Soc. Rev. 2010, 39, 4326–4354.
(5) (a) Wu, C.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J.
ACS Nano 2008, 2, 2415–2423. (b) Tuncel, D.; Demir, H. V. Nanoscale
2010, 2, 484–494. (c) Pecher, J.; Mecking, S. Chem. Rev. 2010, 110,
6260–6279.
(25) Disney, M. D.; Zheng, J.; Swager, T. M.; Seeberger, P. H. J. Am.
Chem. Soc. 2004, 126, 13343–13346.
(26) Gu, F.; Zhang, L.; Teply, B. A.; Mann, N.; Wang, A.; Radovic-
Moreno, A. F.; Langer, R.; Farokhzad, O. C. Proc. Natl. Acad. Sci. U. S. A.
2008, 105, 2586–2591.
(27) DLS and TEM studies revealed aggregation for nanoparticles
consisting of pure (100%) 2 only, probably through intermolecular
hydrogen bonding of carbohydrates (see ref 10j). Reduction to 90% was
found to be enough to overcome unspecific aggregation, as evidenced
by DLS.
(6) Biju, V.; Itoh, T.; Ishikawa, M. Chem. Soc. Rev. 2010, 39,
3031–3056.
(28) This strong multivalent binding manifested itself as well during
the incubation with E. coli, which led to a strong cross-linking of the
bacterial pellet.
(29) (a) Kim, I.-K.; Wilson, J. N.; Bunz, U. H. F. Chem. Commun.
2005, 1273–1275. (b) Schmid, S.; Mishra, A.; B€auerle, P. Chem.
Commun. 2011, 47, 1324–1326.
(7) Oh, J. K. J. Mater. Chem. 2010, 20, 8433–8445.
(8) Mulder, W. J. M.; Strijkers, G. J.; van Tilborg, G. A. F.; Cormode,
D. P.; Fayad, Z. A.; Nicolay, K. Acc. Chem. Res. 2009, 42, 904–914.
(9) Strijkers, G. J.; Kluza, E.; Tilborg, G. A. F.; Schaft, D. W. J.;
Griffioen, A. W.; Mulder, W. J. M.; Nicolay, K. Angiogenesis 2010,
13, 161–173.
(30) (a) Cutler, J. I.; Zheng, D.; Xu, X.; Giljohann, D. A.; Mirkin,
C. A. Nano Lett. 2010, 10, 1477–1480. (b) van Dongen, S. F. M.; Nallani,
M.; Schoffelen, S.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; van Hest,
J. C. M. Macromol. Rapid Commun. 2008, 29, 321–325.
(31) The figures for postfunctionalized nanoparticles represent
typical curves obtained after postfunctionalization. In contrast to
reproducible ligand densities achieved via the prefunctionalization
approach, the reproducibility of ligand densities via the postfunctiona-
lization approach was less.
(10) For some articles on π-conjugated nanoparticles, see: (a)
Moon, J. H.; McDaniel, W.; MacLean, P.; Hancock, L. F. Angew. Chem.,
Int. Ed. 2007, 46, 8223–8225. (b) Wu, C.; Szymanski, C.; Cain, Z.;
McNeill, J. J. Am. Chem. Soc. 2007, 129, 12904–12905. (c) Kaeser, A.;
Schenning, A. P. H. J. Adv. Mater. 2010, 22, 2985–2997. For reviews and
articles about molecularly dissolved π-conjugated polymers and oligo-
mers for imaging and sensing, see:(d) Feng, X.; Liu, L.; Wang, S.; Zhu, D.
Chem. Soc. Rev. 2010, 39, 2411–2419. (e) Herland, A.; Ingan€as, O.
Macromol. Rapid Commun. 2007, 28, 1703–1713. (f) Thomas, S. W.;
Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339–1386. (g) Xue, C.;
Velayudham, S.; Johnson, S.; Saha, R.; Smith, A.; Brewer, W.; Murthy, P.;
Bagley, S. T.; Liu, H. Chem.—Eur. J. 2009, 15, 2289–2295. (h) Duarte, A.;
(32) Haukanes, B.-I.; Kvam, C. Nat. Biotechnol. 1993, 11, 60–63.
(33) The intrinsic nanoparticle fluorescence can be used to deter-
mine the optimal biotin-NPs/magnetic streptavidin beads ratio to
17070
dx.doi.org/10.1021/ja2075345 |J. Am. Chem. Soc. 2011, 133, 17063–17071