3618 Organometallics 2009, 28, 3618–3620
DOI: 10.1021/om9004059
Oxidative Addition of Thioesters to Iron(0): Active-Site Models for Hmd,
Nature’s Third Hydrogenase
Aaron M. Royer, Thomas B. Rauchfuss,* and Danielle L. Gray
Department of Chemistry, University of Illinois at Urbana;Champaign, Urbana, Illinois 61801
Received May 17, 2009
Summary: The thioester Ph2PC6H4-2-C(O)SPh reacts with
Fe2(CO)9 to give [Ph2PC6H4C(O)]Fe(SPh)(CO)3, a mod-
el for the CO-inhibited active site of the enzyme Hmd. This
species, which reversibly decarbonylates to give a diiron
derivative, reacts with cyanide to give [[Ph2PC6H4C(O)]Fe-
(SPh)(CN)(CO)2]-.
single exchangeable residue, this active site is particularly
ripe for modeling, and indeed models have already been
described.5 Recently, however, the structural assignment of
the active site has been significantly revised.6 The new
analysis indicates that Fe is bound also to an acyl ligand,
provided by the GP cofactor (Figure 1). Acyl ligands are
rarely encountered in bioinorganic chemistry,7 and their
coexistence with thiolato ligands defines a novel platform
from the perspective of homogeneous catalysis. The new
structural information;i.e. Fe(SR)(N-donor)(CO)2(acyl);
provides sufficient information to enable the design of a first-
generation model for this active site, which is described
below.
In terms of retrosynthetic analysis, the structure of the Fe
center at the active site suggests that thioesters would
oxidatively add to Fe(0) reagents. The interaction of thioe-
sters with metal complexes has been intermittently investi-
gated,8 including studies suggesting that this interaction is of
prebiotic significance.9 The oxidative addition of a thioester
has been established for rhodium(I) complexes.10 Our ap-
proach focused on the use of a donor-functionalized thioe-
ster, which upon oxidative addition would simultaneously
deliver the Lewis base, thiolate, and acyl groups. To simplify
the analysis of the synthetic studies, we chose to use a
phosphine in place of the nitrogen heterocycle, since 31P
NMR analysis provides a convenient means to monitor
reactive intermediates. The probe thioester, Ph2PC6H4C(O)
SPh, was efficiently generated by condensation of 2-diphe-
nylphosphinobenzoic acid11 and benzenethiol. Related
phosphine thioesters are known12 but have been only lightly
studied.
One of the great surprises in bioinorganic chemistry was the
discovery of the iron carbonyl sites in the [NiFe]- and the
[FeFe]-hydrogenases.1 A third hydrogenase, Hmd (methylene-
tetrahydromethanopterin dehydrogenase), formerly thought to
be “metal-free,” was recently shown to also contain an iron
carbonyl center.2 Because it features only a single Fe center at
its active site, this enzyme is also called the [Fe]-hydrogenase.
Hmd represents possibly the last hydrogenase to be discovered:
it is strongly expressed only under special conditions (Ni defi-
ciency) and only by methanogenic archaea. The fact that three
genetically independent hydrogenases evolved similar catalytic
motifs underscores the versatility of the Fe-S-CO compounds
for reactions involving hydrogen.
Synthetic modeling of the active sites of the hydrogenases,
in parallel with biophysical studies, provides mechanistic
insights. Good progress is being made in the biomimicry of
the active sites of the [NiFe]- and [FeFe]-hydrogenases.3,4
The active site of Hmd consists of a Fe(CO)2 center bound to
a thiolate and the pyridine-like nitrogen of the guanylylpyr-
idinol (GP) cofactor. This ensemble, the Fe-GP cofactor, is
extractable from the protein via transthiolation using mer-
captoethanol. Because it is bound to the protein via this
*To whom correspondence should be addressed. E-mail: rauchfuz@
illinois.edu.
(1) Nicolet, Y.; Lemon, B. J.; Fontecilla-Camps, J. C.; Peters, J. W.
Trends Biochem. Sci. 2000, 25, 138–143.
(2) Shima, S.; Pilak, O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-
Klaucke, W.; Warkentin, E.; Thauer, R. K.; Ermler, U. Science 2008,
321, 572–575.
(6) Hiromoto, T.; Ataka, K.; Pilak, O.; Vogt, S.; Stagni, M. S.;
Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Shima, S.; Ermler,
U. FEBS Lett. 2009, 583, 585–590.
(7) Dougherty, W. G.; Rangan, K.; O’Hagan, M. J.; Yap, G. P. A.;
Riordan, C. G. J. Am. Chem. Soc. 2008, 130, 13510–13511. Ragsdale, S.
W. J. Inorg. Biochem. 2007, 101, 1657–1666. Lindahl, P. A.; Graham, D.
E. Met. Ions Life Sci. 2007, 2, 357–415.
(3) Ohki, Y.; Yasumura, K.; Kuge, K.; Tanino, S.; Ando, M.; Li, Z.;
Tatsumi, K. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 7652–7657. Chiou,
T.-W.; Liaw, W.-F. C. R. Chim. 2008, 11, 818–833. Barton, B. E.;
Whaley, C. M.; Rauchfuss, T. B.; Gray, D. L. J. Am. Chem. Soc.
2009, 131, 6942–6943.
(4) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38,
100–108. Singleton, M. L.; Bhuvanesh, N.; Reibenspies, J. H.; Darens-
bourg, M. Y. Angew. Chem., Int. Ed. 2008, 47, 9492–9495. Felton, G. A.
N.; Vannucci, A. K.; Chen, J.; Lockett, L. T.; Okumura, N.; Petro, B. J.;
Zakai, U. I.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L. J. Am.
Chem. Soc. 2007, 129, 12521–12530. Tard, C.; Liu, X.; Ibrahim, S. K.;
Bruschi, M.; De Gioia, L.; Davies, S. C.; Yang, X.; Wang, L.-S.; Sawers,
G.; Pickett, C. J. Nature 2005, 433, 610–614. Ezzaher, S.; Capon, J.-F.;
Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.; Talarmin, J.; Kervarec,
(8) Li, C.-F.; Xiao, W.-J.; Alper, H. J. Org. Chem. 2009, 74, 888–890.
Arisawa, M.; Kubota, T.; Yamaguchi, M. Tetrahedron Lett. 2008, 49,
1975–1978. Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122,
11260–11261. Villalobos, J. M.; Srogl, J.; Liebeskind, L. S. J. Am. Chem.
Soc. 2007, 129, 15734–15735. Yang, H.; Li, H.; Wittenberg, R.; Egi, M.;
Huang, W.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1132–1140.
Fukuyama, T.; Lin, S.-C.; Li, L. J. Am. Chem. Soc. 1990, 112, 7050–
7051. Wenkert, E.; Chianelli, D. J. Chem. Soc., Chem. Commun. 1991,
627–628.
::
::
(9) Huber, C.; Wachtershauser, G. Science 1998, 281, 670–672.
(10) Shaver, A.; Uhm, H. L.; Singleton, E.; Liles, D. C. Inorg. Chem.
1989, 28, 847–851.
N. Inorg. Chem. 2009, 48, 2–4.
(5) Obrist, B. V.; Chen, D.; Ahrens, A.; Schunemann, V.; Scopelliti,
::
(11) Hoots, J. E.; Rauchfuss, T. B.; Wrobleski, D. A. Inorg. Synth.
1982, 21, 175.
R.; Hu, X. Inorg. Chem. 2009, 48, 3514–3516. Wang, X.; Li, Z.; Zeng, X.;
Luo, Q.; Evans, D. J.; Pickett, C. J.; Liu, X. Chem. Commun. 2008, 3555–
3557. Yang, X.; Hall, M. B. J. Am. Chem. Soc. 2008, 130, 14036–14037.
::
(12) Burger, S.; Therrien, B.; Suss-Fink, G. Inorg. Chim. Acta 2004,
357, 1213–1218.
r
pubs.acs.org/Organometallics
Published on Web 05/28/2009
2009 American Chemical Society