Table 2. Biaryls Obtained 4a-o (R ) 4-Chlorophenyl, R′ ) 3-Fluorophenyl)
a Yields refer to isolated pure product. b Yields refer to isolated slightly impure product. All products were identified spectroscopically. Method A:
Substrate 5 (1 equiv), K2CO3 (2 equiv), in ethanol (2 mL/mmol), 50 °C for 2 days. Method B: Substrate 5 (1 equiv), DBU (5 equiv), 20 °C, 5 days. Method
C: Substrate 5 (1 equiv), DBU (1 equiv), DMF (10 mL/mmol), 150 °C for 10 min under microwave irradiation then 20 °C for 2 days under air.
is completely eliminated. Such an alternate mode of cycliza-
tion leading to a simple cyclohexanone would have been
expected to dominate in the absence of the aromatic ring, in
view of the greater acidity of ketones as compared to ordinary
esters. Another indirect role of the aromatic ring is to
sterically force the alkene to adopt the E-geometry (as shown
for 7 in Scheme 2), which is absolutely necessary for the
ring closure.
Having inadvertently found a convenient route to biaryls,
we next prepared further precursors by radical addition of
various xanthates 2 to olefins 1a and 1b. (Table 1). This
method is effective in producing the required complex R,ꢀ-
unsaturated esters 5a-o in yields ranging from 52 to 81%.
Cyclobutanone xanthates 2k-m were obtained through a
new route we recently developed.15 Two sets of conditions
were used to carry out the radical addition: mild conditions
(refluxing 1,2-dichloroethane) for sligthly sensitive alkyl
xanthates such as cyclobutanone-, cyclopropyl ketone-, or
acetal-containing derivatives and harsher conditions (reflux-
(10) For reviews of the xanthate transfer, see: (a) Zard, S. Z. Angew.
Chem., Int. Ed. Engl. 1997, 36, 672. (b) Zard, S. Z. In Radicals in Organic
Synthesys; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001;
Vol. 1, p 90. (c) Quiclet-Sire, B.; Zard, S. Z. Chem.sEur. J. 2006, 12,
6002. (d) Quiclet-Sire, B.; Zard, S. Z. Top. Curr. Chem. 2006, 264, 201.
(e) Zard, S. Z. Org. Biomol. Chem. 2007, 5, 205.
(11) (a) Abeywickrema, A. N.; Beckwith, A. L. J.; Gerba, S. J. Org.
Chem. 1987, 52, 4072. (b) Parker, T. L.; Spero, D. M.; Irman, K.
Tetrahedron Lett. 1986, 27, 2833. (c) McNab, H. J. Chem. Soc., Chem.
Commun. 1990, 543. (d) Ishibashi, H.; Kobayashi, T.; Nakashima, S.;
Tamura, O. J. Org. Chem. 2000, 65, 9022. (e) Ishibashi, H.; Ohata, K.;
Niihara, M.; Sato, T.; Ikeda, M. J. Chem. Soc., Perkin Trans. 1 2000, 547.
(f) Ouvry, G.; Zard, S. Z. Synlett 2003, 1627.
(12) Quiclet-Sire, B.; Zard, S. Z. J. Am. Chem. Soc. 1996, 118, 1209.
(13) Georghe, A. Quiclet-Sire, B. Villa, X. Zard, S. Z. Tetrahedron 2007,
63, 7187. See also ref 11f.
(14) For conceptually similar approaches, see: (a) Zhang, Q.; Sun, S.;
Hu, J.; Liu, Q.; Tan, J. J. Org. Chem. 2007, 72, 139. (b) Ballini, R.; Palmieri,
A.; Rizhi, P. Tetrahedron 2007, 63, 12099.
(9) (a) Martinez-Barrasa, V.; Garca de Viedma, A.; Burgos, C.; Alvarez-
Builla, J. J. Org. Lett. 2000, 2, 3933. (b) Sharma, R. K.; Kharasch, N. Angew.
Chem., Int. Ed. Engl. 1968, 7, 36. (c) Taylor, E. C.; Kienzie, F.; McKillop,
A. J. Am. Chem. Soc. 1970, 92, 6088. (d) Bonfand, E.; Forslund, L.;
Motherwell, W. B.; Vasquez, S. Synlett 2000, 4, 475. (e) Terashima, M.;
Seki, K.; Yoshida, C.; Ohkura, K.; Kanaoka, Y. Chem. Pharm. Bull. 1985,
33, 1009, and references cited therein.
(15) Heng, R.; Quiclet-Sire, B.; Zard, S. Z. Tetrahedron Lett. 2009, 50,
3613.
2834
Org. Lett., Vol. 11, No. 13, 2009