1294
W. Kuznik et al. / Spectrochimica Acta Part A 78 (2011) 1287–1294
2-(2-(1,3-dioxo-1,3-diphenylpropan-2-ylidene)hydrazinyl) [7] N. Terkia-Derdra, R. Andreu, M. Sallé, E. Levillain, J. Orduna, J. Garin, et al., Chem.
(3),
A Eur. J. 6 (2000) 1199–1223.
benzenesulfonic acid (4), 2-(2-(1,3–dioxo-1,3-diphenylpropan
-2-ylidene)hydrazinyl)benzoic acid (5), 2-(2-(2-hydroxy-4-
nitrophenyl)hydrazono)-1-phenylbutane-1,3-dione (6). Polari-
zable Continuum Model was used to simulate solvatochromic
effects.
[8] A.M. Maharramov, R.A. Aliyeva, I.A. Aliyev, F.G. Pashaev, A.G. Gasanov, S.I. Azi-
mova, R.K. Askerov, A.V. Kurbanov, K.T. Mahmudov, Dyes Pigments 85 (2010)
1–6.
[9] K.T. Mahmudov, M.N. Kopylovich, M.F.C. Guedes da Silva, P.J. Figiel, Y.A.
Karabach, A.J.L. Pombeiro, J. Mol. Catal. A: Chem. 318 (2010) 44–50.
[10] K.T. Mahmudov, A.M. Maharramov, R.A. Aliyeva, I.A. Aliyev, M.N. Kopylovich,
A.J.L. Pombeiro, Anal. Lett. 43 (2010) 2923–2938.
Solvents of different polarities were used to collect experi-
mental spectra, and the same solvents were chosen for the PCM
calculations. It was found that the dipole moment and absorption
spectra are both dependent on solvent type and PCM calculations
may predict those changes, however for most of these compounds
they must be compared with “ordinary” TDDFT to obtain proper
description. Incorporation of the solvent influence model into the
calculations significantly changed the resultant theoretical absorp-
tion spectra. The spectral peak positions were shifted towards
red wavelength in solvent-related calculations with respect to
“solvent-free” TDDFT, and the shift was found to be proportional
to solvent polarity. In the case of acetonitrile (the most polar of the
solvents studied) this shift was as large as 40 nm. Additionally, in
the experimental spectra there were some peaks present in polar
solvents that were absent for non-polar solutions’ spectra. These
differences could be analyzed by comparison with the theoretical
spectra. It was shown that certain excited states (represented by the
above mentioned peaks) had vanishingly low or even zero oscilla-
tion strength when non-polar solvents were used in the calculation
with respect to polar ones. It is thus recommended to employ PCM
model to absorption spectra simulation of azoderivatives in various
solvents.
[11] M.N. Kopylovich, K.T. Mahmudov, M.F.C. Guedes da Silva, M.L. Kuznetsov, P.J.
Figiel, Y.A. Karabach, K.V. Luzyanin, A.J.L. Pombeiro, Inorg. Chem., 50 (2011),
doi:10.1021/ic101516k.
[12] M.N. Kopylovich, K.T. Mahmudov, M.F.C. Guedes da Silva, L.M.D.R.S. Martins,
M.L. Kuznetsov, T.F.S. Silva, A.J.L. Pombeiro, J. Phys. Org. Chem., 24 (2011),
doi:10.1002/poc.1824.
[13] A.M. Maharramov, R.A. Aliyeva, K.T. Mahmudov, A.V. Kurbanov, R.K. Askerov,
Rus. J. Coord. Chem. 35 (2009) 704.
[14] P. Gilli, L. Pretto, V. Bertolasi, G. Gilli, Acc. Chem. Res. 42 (2009) 33–44.
[15] V. Bertolasi, V. Ferretti, P. Gilli, G. Gilli, Y.M. Issa, O.E. Sherif, J. Chem. Soc. Perkin
Trans. 2 (1993) 2223–2228.
[16] V. Bertolasi, P. Gilli, V. Ferretti, G. Gilli, K. Vaughan, New J. Chem. 23 (1999)
1261–1267.
[17] P. Gilli, V. Bertolasi, L. Pretto, A. Lycka, G. Gilli, J. Am. Chem. Soc. 124 (2002)
13554–13567.
[18] V. Bertolasi, L. Pretto, G. Gilli, P. Gilli, Acta Crystallogr. B 62 (2006) 850–863.
[19] P. Gilli, V. Bertolasi, L. Pretto, G. Gilli, J. Mol. Struct. 790 (2006) 40–49.
[20] P. Simunek, V. Bertolasi, V. Machacek, J. Mol. Struct. 642 (2002) 41–51.
[21] J. McVie, D. Alastair, R.S. Sinclair, T.G. Truscott, J. Chem. Soc. Perkin Trans. 2
(1980) 286–290.
[22] F. Huang, Y. Wu, D. Gu, F. Gan, Thin Solid Films 483 (2005) 251–256.
[23] Z. Chen, F. Huang, Y. Wu, D. Gu, F. Gan, Inorg. Chem. Commun. 9 (2006) 21–24.
[24] J. Sokolnicki, J. Legendziewicz, W. Amirkhanov, V. Ovchinnikov, L. Macalik,
Hanuza, J. Spectrochim. Acta A 55 (1999) 349–367.
[25] M.A.N.D.A. Lemos, A.J.L. Pombeiro, J. Organometal. Chem. 332 (1987) C17–C20.
[26] A. Venâncio, M.F.C. Guedes da Silva, L.M.D.R.S. Martins, J.J.R. Fraústo da Silva,
A.J.L. Pombeiro, Organometallics 24 (2005) 4654–4665.
[27] A.J.L. Pombeiro, Eur. J. Inorg. Chem. 11 (2007) 1473–1482.
[28] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.
Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Nor-
mand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N.
Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W.
Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador,
J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J.
Cioslowski, D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT,
2009.
Acknowledgments
This work has been partially supported by the Foundation for
Science and Technology (FCT), Portugal, and its PPCDT (FEDER
funded) and “Science 2007” programs. M.N.K. and K.T.M. express
gratitude to the FCT for a post-doc fellowship and a working con-
tract. The authors gratefully acknowledge the Portuguese NMR
Network (IST-UTL Center) for the NMR facility. Calculations have
been carried out in Wroclaw Center for Networking and Supercom-
[29] A.R. Allouche, Gabedit is a Free Graphical User Interface for Computational
[30] S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55 (1981) 117–129.
[31] S. Miertus, J. Tomasi, Chem. Phys. 65 (1982) 239–245.
˙
thank Prof. Jerzy Zak and PhD Wojciech Domagała for their valuable
comments on the electrochemical measurements.
[32] A.A. Granovskt, PC GAMESS Version 7.1.E (Firefly), Copyright (c) 1994, Moscow
State University, Moscow, Russia, 2008.
[33] M.W. Schmidt, K.K. Balridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen,
S. Koseki, K.A. Matsunaga, S.J. Nguen, T.L. Su, M. Windus, J.A. Dupuis, Mont-
gomery, J. Comput. Chem. 14 (1993) 1347–1363 (PCGAMESS is partially based
on GAMESS (US) ver. 6 June 1999, Iowa State Univ).
[34] F.R. Japp, F. Klingemann, Liebigs Annalen der Chemie 247 (1988) 190–225.
[35] H.C. Yao, P. Resnick, J. Am. Chem. Soc. 84 (1962) 3514–3517.
[36] H.C. Yao, J. Org. Chem. 29 (1964) 2959–2963.
[37] M.N. Kopylovich, K.T. Mahmudov, A.J.L. Pombeiro, J. Hazard. Mater. 186 (2011),
[38] J. Marten, W. Seichter, E. Weber, Zeitschrift für anorganische und allgemeine
Chemie 631 (2005) 869–877.
[39] J. Marten, W. Seichter, E. Weber, U. Bohme, J. Phys. Org. Chem. 20 (2007)
716–731.
[40] C. Bustos, C. Sanchez, R. Martınez, R. Ugarte, E. Schott, C.D. Mac-Leod, M.T.
Garland, L. Espinoza, Dyes Pigments 74 (2007) 615–621.
[41] J. Marten, W. Seichter, E. Weber, U. Bohme, CrystEngComm 10 (2008) 541–547.
[42] E. Weber, J. Marten, W. Seichter, J. Coord. Chem. 62 (2009) 3401–3410.
[43] S. Trasatti, Pure Appl. Chem. 58 (1986) 955–966.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] M. Czerwinski, J. Bieleninik, J. Napieralski, I.V. Kityk, J.R.I. Kasperczyk Mervin-
skii, Eur. Polym. J. 33 (1997) 1441–1447.
[2] M.G. Brik, E. Gondek, T. Uchacz, P. Szlachcic, P. Jarosz, K.J. Plucinski, Chem. Phys.
370 (2010) 194–200.
[3] D.R. Kanis, M. Ratner, T.J. Marks, Chem. Rev. 94 (1994) 193–201.
[4] P. Calaminici, K. Jug, A.M. Koester, C. Arbez-Gindre, C.G. Screttas, J. Comput.
Chem. 23 (2002) 291–297.
[5] J.L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104 (2004)
4971–5003.
[6] S.A. Locknar, L.A. Peteanu, Z.G. Shuai, J. Phys. Chem. A 103 (1999) 2184–
2196.
[44] V.V. Pavlishchuk, A.W. Addison, Inorg. Chim. Acta 298 (2000) 97–102.