3006
A. L. Braga et al. / Tetrahedron Letters 50 (2009) 3005–3007
HO
TsO
Se + LiEt3BH
HO
U
U
TsCl, Et3N,
DMAP
CH2Cl2, r.t.
U
O
O
O
N
HC(OMe)3
PPTS
THF
O
O
O
NH
NH
NH
O
O
O
2
O
HO
OH
uridine
95 % (2 steps)
AcS
TsO
Se
N
O
O
N
O
O
O
1
AcSH, KOH
Li2Se2
OMe
OMe
O
O
O
THF
EtOH
r.t., 24 h
r.t., 24 h
O
O
O
O
Scheme 1. Synthesis of tosylate 2 (U = uracil).
52 %
85 %
OMe
3
OMe
2
OMe
5
2
accomplished by nucleophilic substitution of an appropriate leav-
ing group, obtained by activation of the 50-hydroxyl at a protected
uridine derivative.
Scheme 2. Syntheses of 3 and 5.
As delineated in our synthesis plan, the success of our strategy
was closely linked to an efficient activation of the 50-hydroxyl
group in uridine. Thus, based on our previous experience on the
nucleophilic substitution of a tosylate group by chalcogen nucleo-
philes,19 we decided to transform the 50-hydroxyl group in their
corresponding p-toluenesulfonate ester, as already described by
Poulter et al.20 First, appropriate protection of the secondary hy-
droxyl groups of uridine was needed and this was accomplished
by reaction with trimethylorthoformate, in the presence of PPTS,
to afford the corresponding 2’,3’-methoxymethylidene derivative
1. The protected uridine 1 was treated, without purification, with
p-toluenesulfonyl chloride, in the presence of DMAP and Et3N, to
smoothly provide the required 5’-OTs uridine in an excellent 95
% yield, for the two steps (Scheme 1).20
With the required tosylate 2 in hand, we turned our attention to
the introduction of the organochalcogen moiety by nucleophilic
displacement. Pleasingly, we found that treatment of 2 with phe-
nylselenide anion, generated by reduction of diphenyl diselenide
with sodium borohydride, afforded the desired 5’-phenylseleno
nucleoside 3a in good yield, using a mixture of THF and ethanol
as solvent (Table 1, entry 1). Extension of these conditions to a
broader range of selenium nucleophiles proved to be viable, and
the reaction with the nucleophile derived from (4-ClPhSe)2 affor-
ded the corresponding selenium-containing uridine derivative 3b
in 72% yield (entry 2). Aliphatic diselenides, where R groups were
Bn, n-Bu, and Et, were also evaluated as the nucleophilic source
and products 3c–e were obtained in good yields (entries 3–5). In
order to expand the scope of the methodology to other chalcogens,
we decided to prepare tellurium derivatives of uridine. This was
accomplished in the same way as for the selenium derivatives,
and cleavage of diorganoditellurides with NaBH4, followed by reac-
tion with tosylate 2 smoothly provides the corresponding telluro-
nucleosides 3f–i in good yields (entries 6–9). Again, the reaction
is applicable to both aromatic and aliphatic tellurium nucleophiles.
Also, the reduction of (PhS)2 with NaBH4, followed by reaction with
2, under our standard conditions, furnished the sulfur derivative in
77 % yield (entry 10).21
Finally, treatment of tosylate 2 with thioacetic acid, under basic
conditions, afforded the corresponding thioacetate in 85 % yield
(Scheme 2). In addition, reaction of 2 with lithium diselenide,
generated in situ by the reaction of elemental selenium with
super-hydride,22,23 smoothly afforded the desired diselenide in a
moderate 52 % yield (Scheme 2).24
In summary, we have described herein the synthesis of sele-
nium- and tellurium-containing nucleosides, derived from uridine
in a concise and short synthetic route in good yields. Additionally,
the organochalcogen moiety might serve as a synthetic handle for
the synthesis of deoxynucleosides and, more importantly, we
believe that it might display GPx-like activity.
Acknowledgments
The authors would like to thank CNPq, CAPES, NANOBIOSIMES,
INCT-Catálise, and FAPESP for financial support.
Supplementary data
Supplementary data associated with this Letter can be found, in
References and notes
1. Schwartz, K.; Foltz, C. M. J. Am. Chem. Soc. 1957, 79, 3292.
2. For
a recent review on the methods of synthesis of selenocysteine, see:
Wessjohann, L. A.; Schneider, A. Chem. Biodiv. 2008, 5, 375.
3. For an excellent review on the comparison of selenium and sulfur in chemistry
and biochemistry, see: Wessjohann, L. A.; Schneider, A.; Abbas, M.; Brandt, W.
Biol. Chem. 2007, 388, 997.
4. (a) May, S. W.; Pollock, S. H. Drugs 1998, 56, 959; (b) Mugesh, G.; du Mont, W.-
W.; Sies, H. Chem. Rev. 2001, 101, 2125; (c) Nogueira, C. W.; Zeni, G.; Rocha, J. B.
T. Chem. Rev. 2004, 104, 6255.
Table 1
Synthesis of selenium- and tellurium-containing nucleosides
5. For a review, see: Wnuk, S. F. Tetrahedron 1993, 49, 9877.
O
O
N
6. Adiwidjaja, G.; Schulze, O.; Voss, J.; Wirsching, J. Carbohydr. Res. 2000, 325, 107.
7. Belostotskii, A. M.; Lexner, J.; Hassner, A. Tetrahedron Lett. 1999, 40, 1181.
8. Stawinski, J.; Thelin, M. J. Org. Chem. 1994, 59, 130.
9. Jeong, L. S.; Tosh, D. K.; Kim, H. O.; Wang, T.; Hou, X.; Yun, H. S.; Kwon, Y.; Lee, S.
K.; Choi, J.; Zhao, L. X. Org. Lett. 2008, 10, 209.
10. Goudgaeon, N. M.; Schinazi, R. F. J. Med. Chem. 1991, 34, 3305.
11. Chu, C. K.; Ma, L.; Olgen, S.; Pierra, C.; Du, J.; Gumina, G.; Gullen, E.; Cheng, Y.-
C.; Schinazi, R. F. J. Med. Chem. 2000, 43, 3906.
12. (a) Cosford, N. D. P.; Schinazi, R. F. J. Org. Chem. 1991, 56, 2161; (b) Diaz, Y.; El-
Laghdach, A.; Matheu, M. I.; Castillón, S. J. Org. Chem. 1997, 62, 1501; (c) Diaz,
Y.; El-Laghdach, A.; Castillón, S. Tetrahedron 1997, 53, 10921.
NH
NH
TsO
RY
N
O
O
O
RYYR/NaBH4
O
O
THF/EtOH (3:1)
r.t., 10 h
3a-j
2
O
O
O
OMe
OMe
Entry
RYYR
RY
Yield (%)
13. (a) Du, Q.; Carrasco, N.; Teplova, M.; Wilds, C. J.; Egli, M.; Huang, Z. J. Am. Chem.
Soc. 2002, 124, 24; (b) Höbartner, C.; Micura, R. J. Am. Chem. Soc. 2004, 126,
1141; (c) Buzin, Y.; Carrasco, N.; Huang, Z. Org. Lett. 2004, 6, 1099; (d) Salon, J.;
Chen, G.; Portilla, Y.; Germann, M. W.; Huang, Z. Org. Lett. 2005, 7, 5645.
14. For a review on selenium derivatization of nucleic acids for crystallography,
see: Jiang, J.; Sheng, J.; Carrasco, N.; Huang, Z. Nucleic Acid Res. 2007, 35, 477.
15. (a) Sies, H.; Arteel, G. E. Free Radical Biol. Med. 2000, 28, 1451; (b) Detty, M. R.;
Gibson, S. L. Organometallics 1992, 11, 2147; (c) Engman, L.; Stern, D.; Frisell,
H.; Vessman, K.; Berglund, M.; Ek, B.; Andersson, C. M. Bioorg. Med. Chem. 1995,
3, 1255; (d) Engman, L.; Laws, M.; Malmström, J.; Schiesser, C. H.; Zugaro, L. M.
J. Org. Chem. 1999, 64, 6764; (e) Malmström, J.; Jonsson, M.; Cotgreave, I. A.;
Hammarström, L.; Sjödin, M.; Engman, L. J. Am. Chem. Soc. 2001, 123, 3434.
1
2
3
4
5
6
7
8
9
(PhSe)2
PhSe
75
72
70
70
67
78
65
60
76
77
(4-ClPhSe)2
(PhCH2Se)2
(n-BuSe)2
(EtSe)2
4-ClPhSe
PhCH2Se
n-BuSe
EtSe
PhTe
4-ClPhTe
4-MeOPhTe
n-BuTe
PhS
(PhTe)2
(4-ClPhTe)2
(4-MeOPhTe)2
(n-BuTe)2
(PhS)2
10