5922 Inorganic Chemistry, Vol. 48, No. 13, 2009
Galardon et al.
challenging field of investigation for bioinorganic chemists,
since organic persulfides are generally unstable14-17 and
rapidly degraded under the conditions commonly used in
inorganic synthesis, including the presence of redox active
metal cations and the use of basic conditions or of polar
solvents. As part of our ongoing work on the reactivity of
oxidized sulfur species toward metals,18,19 we wish to report
our first results on the study of the interaction between
hydrodisulfides and inorganic complexes. A number of alkyl-
or aryldisulfanido derivatives have been reported in the
literature,20-29 but to the best of our knowledge this work
describes the first direct rational synthesis of alkyldisulfanido
complexes by the simple reaction of a metal complex with a
synthetic persulfide, as well as the first alkyldisulfanido
complexes of zinc to be structurally characterized.
Thiols can react with organic persulfides either at the
sulfenyl (inner) sulfur (Scheme 1a, path (a)) or at the
sulfhydryl (terminal) sulfur14,15 (Scheme 1a, path (b)) leading
to the formation of a disulfide (RSSR0) with release of
hydrogen sulfide, or to a sulfur transfer from the hydrodi-
sulfide (RSSH) to the thiol (R0SH) with formation of a new
hydrodisulfide (R0SSH). In biology, this rich chemistry
(hydrodisulfides are also nucleophiles) make the persulfide
group a versatile reagent for incorporating sulfur along many
metabolic pathways.9 For instance, the release of hydrogen
sulfide upon reduction of the persulfide bond by a thiol is
related to the biosynthesis of 4-thiouridine and of iron-
sulfurclusters30,31 or to thevasoactivity ofgarlic,32 whenpath
(b) is related to the transfer of the active sulfur, generated by
cysteine desulfurases, to the cysteine of a protein acceptor
until the incorporation of the sulfur atom into an end
product.9 Binding the organic persulfide to a metal to give
an alkyldisulfanido complex leads to a more complex situa-
tion with three electrophilic centers, the two sulfurs of the
Scheme 1. Possible Reactions between a Thiol and a Free (1a) or
Metal Bonded (1b) Organic Persulfide
persulfide as described above, and the metal center, thus
adding the possible formation of thiolato complexes
(Scheme 1b) and subsequent reactions. In this regard, the
reactivity of our alkyldisulfanido zinc derivatives toward
thiols is explored in the second part of this paper.
Results and Discussion
Synthesis and Spectroscopic Characterization of the
Alkyldisulfanido Complexes. Several alkyldisulfanido me-
tal derivatives LnM(SSR) have been reported (many if
trithioperoxycarboxylates are classified as persulfides).
They mostly result from unexpected side reactions,20-22
even if some rational routes have also been described,
such as the nucleophilic attack of coordinated hydrogen
(sulfido)23,24 or disulfido25 ligands on either electrophilic
carbon or sulfur centers, sulfur insertion into metal-
carbon bonds,26 or redox processes.27-29 However,
to our knowledge, no alkyldisulfanido complex derived
from the simple reaction of a metal hydroxo complex
with a hydrodisulfide has been reported so far. Hydri-
dotris-(pyrazolyl)borate (Tp) ligands containing a bulky
substituent at the pyrazole 3-position are known to
give access to the stable albeit reactive TpZn-(OH) spe-
cies.33,34 In these complexes, the hydroxide behaves as a
base or a nucleophile. Following this strategy, we used as
scaffold the two sterically restricting ligands TpiPr,iPrK35
and TpPh,MeK, previously reported to yield stable thiola-
to zinc complexes by reaction between TpZn(OH) and
various thiols.36-38 Reaction of equimolar amounts of
the zinc derivatives TpiPr,iPrZn(OH)33 or TpPh,MeZn-
(OH)39 with tert-butyl hydrodisulfide tBuSSH40 or triphe-
nylmethane hydrodisulfide (Ph)3CSSH41 in non-polar
solvents (heptane or dichloromethane) readily affords the
(14) Kawamura, S.; Otsuji, Y.; Nakabayashi, T.; Kitao, T.; Tsurugi, J.
J. Org. Chem. 1965, 30(8), 2711.
(15) Kawamura, S.; Nakabayashi, T.; Kitao, T.; Tsurugi, J. J. Org. Chem.
1966, 31(6), 1985.
(16) Kawamura, S.; Kitao, T.; Nakabayashi, T.; Horii, T.; Tsurugi, J.
J. Org. Chem. 1968, 33(3), 1179.
(17) Kawamura, S.; Abe, Y.; Tsurugi, J. J. Org. Chem. 1969, 34(11), 3633.
(18) Bourles, E.; Alves de Sousa, R.; Galardon, E.; Giorgi, M.; Artaud, I.
Angew. Chem., Int. Ed. 2005, 44(38), 6162.
(19) Galardon, E.; Bourles, E.; Artaud, I.; Daran, J.-C.; Roussel, P.;
Tomas, A. Inorg. Chem. 2007, 46(11), 4515.
(20) John, E.; Bharadwaj, P. K.; Krogh-Jespersen, K.; Potenza, J. A.;
Schugar, H. J. J. Am. Chem. Soc. 1986, 108(16), 5015.
(21) Kanney, J.; Noll, B. C.; DuBois, M. R. Organometallics 2000, 19(23),
4925.
(22) Schweitzer, D.; Shearer, J.; Rittenberg, D. K.; Shoner, S. C.; Ellison,
J. J.; Loloee, R.; Lovell, S.; Barnhart, D.; Kovacs, J. A. Inorg. Chem. 2002, 41
(12), 3128.
(33) Kitajima, N.; Hikichi, S.; Tanaka, M.; Morooka, Y. J. Am. Chem.
Soc. 1993, 115(13), 5496.
(23) Shaver, A.; Hartgerink, J.; Lai, R. D.; Bird, P.; Ansari, N. Organo-
(34) Ibrahim, M. M.; Perez Olmo, C.; Tekeste, T.; Seebacher, J.;
He, G.; Calvo, J. A. M.; Boehmerle, K.; Steinfeld, G.; Brombacher, H.;
Vahrenkamp, H. Inorg. Chem. 2006, 45(18), 7493.
(35) In this paper, TpiPr,iPr refers to hydridotris-((3,5-isopropyl)pyrazolyl)
borate, TpPh,Me refers to hydridotris-((3-phenyl,5-methyl)pyrazolyl)borate,
and Tp refers to both ligands.
metallics 1983, 2(7), 938.
(24) Shaver, A.; Plouffe, P.-Y. Inorg. Chem. 1994, 33(19), 4327.
(25) Lobana, T. S.; Isobe, K.; Kitayama, H.; Nishioka, T.; Doe, M.;
Kinoshita, I. Organometallics 2004, 23(22), 5347.
(26) Legzdins, P.; Sanchez, L. J. Am. Chem. Soc. 1985, 107(19), 5525.
(27) Bhattacharya, S. N.; Senoff, C. V.; Walker, F. S. Inorg. Chim. Acta
1980, 44(6), 273.
(36) Brand, U.; Rombach, M.; Seebacher, J.; Vahrenkamp, H. Inorg.
(28) Shaver, A.; Morris, S. Inorg. Chem. 1991, 30(8), 1926.
(29) Thomas, S.; Eagle, A. A.; Sproules, S. A.; Hill, J. P.; White, J. M.;
Tiekink, E. R. T.; George, G. N.; Young, C. G. Inorg. Chem. 2003, 42(19),
5909.
Chem. 2001, 40(24), 6151.
(37) Boerzel, H.; Koeckert, M.; Bu, W.; Spingler, B.; Lippard, S. J. Inorg.
Chem. 2003, 42(11), 1604.
(38) Matsunaga, Y.; Fujisawa, K.; Ibi, N.; Miyashita, Y.; Okamoto, K.-i.
(30) Wright, C. M.; Christman, G. D.; Snellinger, A. M.; Johnston, M. V.;
Inorg. Chem. 2005, 44(2), 325.
Mueller, E. G. Chem. Commun. 2006, 29, 3104.
(39) Puerta, D. T.; Cohen, S. M. Inorg. Chem. 2002, 41(20), 5075.
(40) Derbesy, G.; Harpp, D. N.; Rather, B.; Carroll, G. Sulfur Lett. 1992,
14(4), 199.
(41) Nakabayashi, T.; Tsurugi, J.; Yabuta, T. J. Org. Chem. 1964, 29(5),
1236.
(31) Liu, Y.; Cowan, J. A. Chem. Commun. 2007, 30, 3192.
(32) Benavides, G. A.; Squadrito, G. L.; Mills, R. W.; Patel, H. D.; Isbell,
T. S.; Patel, R. P.; Darley-Usmar, V. M.; Doeller, J. E.; Kraus, D. W. Proc.
Natl. Acad. Sci. U.S.A. 2007, 104(46), 17977.