Scheme 1
.
Synthesis of Enals
Scheme 2. Our Synthesis of Enals
tion to aldehydes, and elimination provides enals (F).
Although this method has advantages over those outlined
above, it is not economically viable because Schwartz’s
reagent is prohibitively expensive (>$2,000/mol from Ald-
rich).
Our approach to R,ꢀ-unsaturated aldehydes involves
hydroboration of ethoxy acetylene with BH3·SMe2 to generate
the tris(vinyl) borane (Scheme 2).11 This intermediate can
be prepared on scale and stored for months under a nitrogen
atmosphere or used directly in situ. Transmetalation from
boron to zinc at -78 °C and addition to aldehydes or ketones
affords zinc alkoxy enol ethers,12 which readily undergo
elimination on workup with 2 M HCl.
additional steps. Wittig,6 Horner-Emmons,7 and Peterson-
type reagents8 are generally not compatible with base-
sensitive functional groups and/or can require additional
synthetic steps to generate enals (D).
The broad substrate scope of this tandem reaction is
illustrated in Table 1. Aliphatic (entries 1-3), aromatic
(entries 4 and 8), and heteroaromatic aldehydes (entries 5-7)
and conjugated enals (entries 9 and 10) and ynals (entry 11)
undergo homologation to afford enals with 72-96% yield.
Particularly noteworthy is the successful conversion of
phenyl acetaldehyde to the expected enal in 89% yield,
despite the acidic nature of its R-hydrogens (entry 3).
Ketone substrates were more challenging and exhibited
variable results. Cyclohexanone (entry 12) was an excellent
substrate and furnished the enal in 86% yield. Given the low
reactivity of benzophenone and the mild nature of organozinc
reagents,13 we were surprised to isolate 54% yield of the
enal (entry 13). Unsymmetrical ketones, such as acetophe-
none (entry 14), gave little E:Z selectivity (3:1) unless the
two groups flanking the carbonyl were significantly different
in size, such as tert-butyl versus methyl (E:Z ) 15:1, 53%
yield, entry 15). To examine the selectivity of the vinylzinc
intermediate toward aldehydes versus ketones, a 1:1 mixture
of cyclohexane carboxaldehyde and cyclohexanone were
subjected to 1 equiv of ethoxy vinylzinc reagent. The more
reactive aldehyde was converted to the enal product, and
the ketone was left untouched.
Methods employing commercially available ethoxy acety-
lene are most attractive (Scheme 1, E and F). Hydrostan-
nylation of ethoxy acetylene provides a vinylstannane.
Transmetalation with n-BuLi leads to a highly reactive
vinyllithium that readily adds to aldehydes and ketones to
afford enals on acidic workup.9 The drawback of such
methods is the incompatibility of the vinyllithium with most
functional groups. Suzuki introduced a method that combines
the two steps above into one and circumvents the highly
reactive vinyllithium intermediate in E.10 Thus, hydrozir-
conation of ethoxy acetylene, in situ transmetalation of the
vinylzirconocene intermediate with catalytic AgClO4, addi-
(5) (a) Gaudemar, M.; Bellassoued, M. Tetrahedron Lett. 1990, 31, 349–
352. (b) Bellassoued, M.; Majidi, A. J. Org. Chem. 1993, 58, 2517–2522.
(6) (a) Zhou, G.; Hu, Q.-Y.; Corey, E. J. Org. Lett. 2003, 5, 3979–
3982. (b) Hudson, R. D. A.; Manning, A. R.; Gallagher, J. F.; Garcia, M. H.;
Lopes, N.; Asselberghs, I.; Boxel, R. V.; Persoons, A.; Lough, A. J. J.
Organomet. Chem. 2002, 655, 70–88. (c) Mladenova, M.; Ventelon, L.;
Blanchard-Desce, M. Tetrahedron Lett. 1999, 40, 6923–6926. (d) Daubresse,
N.; Francesch, C.; Rolando, C. Tetrahedron 1998, 54, 10761–10770. (e)
Cristau, H.-J.; Gasc, M.-B. Tetrahedron Lett. 1990, 31, 341–344. (f) Fraser-
Reid, B.; Molino, B. F.; Magdzinski, L.; Mootoo, D. R. J. Org. Chem.
1987, 52, 4505–4511. (g) Cresp, T. M.; Sargent, M. V.; Vogel, P. J. Chem.
Soc., Perkin Trans. 1974, 1, 37–41.
In the case of p-phthalaldehyde the di(enal) was isolated
in 70% yield (entry 16). The o-derivative (entry 17),
(7) (a) Michel, P.; Rassat, A.; Daly, J. W.; Spande, T. F. J. Org. Chem.
2000, 65, 8908–8918. (b) Paterson, I.; Cumming, J. G.; Ward, R. A.;
Lamboley, S. Tetrahedron 1995, 51, 9393–9412. (c) Nicolaou, K. C.; Harter,
M. W.; Gunzner, J. L.; Nadin, A. Liebigs Ann.-Recl. 1997, 7, 1283–1301.
(d) Still, W. C.; Gennari, C. Tet. Lett. 1983, 24, 4405–4408. (e) Ando, K.
Tetrahedron Lett. 1995, 36, 4105–4108.
(10) (a) Maeta, H.; Hashimoto, T.; Hasegawa, T.; Suzuki, K. Tetrahedron
Lett. 1992, 33, 5965–5968. (b) Maeta, H.; Suzuki, K. Tetrahedron Lett.
1993, 34, 341–344.
(11) Miyaura, N.; Maeda, K.; Suginome, H. J. Org. Chem. 1982, 47,
2117–2120.
(8) (a) Corey, E. J.; Enders, D.; Bock, M. G. Tetrahedron Lett. 1976, 1,
7–10. (b) Martin, S. F.; Dodge, J. A.; Burgess, L. E.; Limberakis, C.;
Hartmann, M. Tetrahedron 1996, 52, 3229–3246.
(12) Jeon, S.-J.; Chen, Y. K.; Walsh, P. J. Org. Lett. 2005, 7, 1729–
1732.
(9) Wollenberg, R. H.; Albizati, K. F.; Peries, R. J. Am. Chem. Soc.
1977, 99, 7365–7367.
(13) Garc´ıa, C.; Libra, E. R.; Carroll, P. J.; Walsh, P. J. J. Am. Chem.
Soc. 2003, 125, 3210–3211.
2118
Org. Lett., Vol. 11, No. 10, 2009