D. W. Knight, X. Qing / Tetrahedron Letters 50 (2009) 3534–3537
3537
O
O
References and notes
ref 25
OMe
OMe
N
HO
N
1. Machlin, L. J. Vitamin E: A Comprehensive Treatise; Marcel Decker: New York,
1980; Kamal-Eldin, A.; Åppelqvist, L.-A. Lipids 1996, 31, 671.
2. Netscher, T. In Lipid Synthesis and Manufacture; Gunstone, F. P., Ed.; Academic
Press Ltd: Sheffield, UK, 1999; pp 250–267; Netscher, T. Chimica 1996, 50, 563.
3. Baldenius, K. U.; von dem Bussche-Hünnefeld, L.; Hilgemann, E.; Hoppe, P.;
Stürmer, R. Ullman’s Encyclopedia of Industrial Chemistry; VCH
Verlagsgesellschaft: Weinheim, 1996. A27, pp 478–488 and 594–597.
4. For recent contributions to this topic, see Rosenau, T.; Kloser, E.; Gille, L.;
Mazzini, F.; Netscher, T. J. Org. Chem. 2007, 72, 3268; Torres, J. L.; Carreras, A.;
Jiménez, A.; Brillas, E.; Torrelles, X.; Rius, J.; Juliá, L. J. Org. Chem. 2007, 72, 3750;
See also Shimoda, K.; Kondo, Y.; Akagi, M.; Abe, K.; Hamada, H.; Hamada, H.
Chem. Lett. 2007, 570.
HO
30 (ee 91%)
29
i
O
O
OMe
iii
ii
HO
TBSO
TBSO
TBSO
N
HO
TBSO
(S)-20
32
31
5. Cohen, N.; Lopresti, R. J.; Saucy, G. J. Am. Chem. Soc. 1979, 101, 6710; See also
Mizuguchi, E.; Suzuki, T.; Achiwa, K. Synlett 1994, 929.
6. Takabe, K.; Okisaka, K.; Uchiyama, Y.; Katagiri, T.; Yoda, H. Chem. Lett. 1985,
651; Mizuguchi, E.; Achiwa, K. Synlett 1995, 1255.
Scheme 10. Reagents and conditions: (i) TBSCl (2.2 equiv), imidazole (3.3 equiv),
DMF, 35 °C, 16 h (94%); (ii) LiAlH4, Et2O, À78 °C, 40 min, then aq 2 M NaOH (88%);
(iii) (a) PPh3, CBr4, CH2Cl2, 20 °C, 4 h (74%), (b) BuLi, THF, À30 °C, then warm to 0 °C,
1 h (59%), (c) 1 M TBAF, THF, 20 °C, 2 h (82%).
7. Tietze, L. F.; Görlitzer, J. Synthesis 1997, 877.
8. Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J.-P.; Sylvain, C. J. Am. Chem. Soc. 2004,
126, 11966; Tietze, L. F.; Sommer, K. M.; Zinngrebe, J.; Stecker, F. Angew. Chem.,
Int. Ed. 2005, 44, 257; For a review, see: Tietze, L. F.; Kinzel, T. Pure Appl. Chem.
2007, 79, 629.
9. Bonrath, W.; Dittel, C.; Giraudi, L.; Netscher, T.; Pabst, T. Catal. Today 2007, 121,
65; Netscher, T.; Malaisé, G.; Bonrath, W.; Breuninger, M. Catal. Today 2007,
121, 71.
10. Grütter, C.; Alonso, E.; Chougnet, A.; Woggon, W.-D. Angew. Chem., Int. Ed. 2006,
45, 1126.
11. Knight, D. W.; Little, P. B. J. Chem. Soc., Perkin Trans. 1 2000, 2343.
12. Knight, D. W.; Little, P. B. J. Chem. Soc., Perkin Trans. 1 2001, 1771.
13. Fleet, G. W. J.; Fleming, I.; Philippi, D. J. Chem. Soc. 1971, 3948. and references
cited therein.
14. Birkett, M. A.; Knight, D. W.; Little, P. B.; Mitchell, M. B. Tetrahedron 2000, 56,
1013.
15. Bruice, T. C.; Kharasch, N.; Winzler, R. J. J. Org. Chem. 1953, 18, 83.
16. WARNING: It is essential that, during the final heating stage of this nitration,
the temperature is NOT allowed to exceed 70 °C, as a VERY violent detonation
can occur above this temperature.
reaction gave the reported excellent yields of the dihydroxy amide
30, with 91% ee, according to GC analysis (Scheme 10).26
Subsequent manipulation through to the desired alkyne diol
followed a relatively standard pathway (Scheme 10): bis-silylation
worked well to give the expected derivative 31, which we found
was best reduced to the aldehyde 32 using lithium aluminium hy-
dride at low temperature, rather than the more usual DIBAL, which
also gave substantial quantities of the corresponding alcohol and
mono-desilylated aldehyde. Corey-Fuchs homologation and desily-
lation finally gave the desired (S)-alkyne-diol, (S)-20, in acceptable
yield. As this compound would be expected to react in exactly the
same manner as the racemate 20, we had therefore formally com-
pleted an asymmetric synthesis of the target a-tocopherol precur-
17. Entwistle, I. D.; Johnstone, R. A. W.; Povall, T. J. J. Chem. Soc., Perkin Trans. 1
1975, 1300.
18. Tanemura, K.; Suzuki, T.; Nishida, Y. Chem. Lett. 2003, 932.
19. Little, P. B. PhD thesis, Cardiff University, 2001.; Knight, D. W.; Little, P. B.
Tetrahedron Lett. 1998, 39, 5105.
20. Carothers, W. H.; Coffman, D. D. J. Am. Chem. Soc. 1932, 54, 4071.
21. Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
22. Campbell, C. D.; Rees, C. W. J. Chem. Soc. (C) 1969, 742.
23. Vidal, J.; Hannachi, J.; Hourdin, G.; Mulatier, J. Tetrahedron Lett. 1998, 39, 8845;
Vidal, J.; Pamestoy, S.; Collet, A. Tetrahedron Lett. 1995, 36, 1439. and references
cited therein; Vidal, J.; Damestoy, S.; Guy, L.; Hannachi, J. Chem. Eur. J. 1997, 3,
1691.
24. Farina, V.; Kapadia, S.; Krishnan, B. J. Org. Chem. 1994, 59, 5905.
25. Avenoza, A.; Cativiela, C.; Peregrina, J. M. Tetrahedron: Asymmetry 2001, 12,
1383.
sor 4.
Hence, overall, this synthesis clearly demonstrates that highly
substituted benzynes can indeed be generated from 1-amin-
obenzotriazoles and trapped efficiently by alcohols. The length of
this present route is not especially attractive, however, and our
current efforts are directed towards developing new chemistry
which will hopefully result in much shorter preparations of such
benzyne precursors in general.
Acknowledgements
We are grateful to Dr Paul B. Little and Mr Brian Rees for con-
ducting some preliminary experiments, to Dr Robert Jenkins for
invaluable technical assistance and to the ORS Scheme for partial
financial support (to X.Q.).
26. CDX-b column; temperatures: oven 100 °C; detector 300 °C; injection port
200 °C; helium flow at column head pressure of 20 psi; retention time of (R)-
isomer: 29 min. Ees determined against a racemic sample.