762
M. Panigrahi et al. / Spectrochimica Acta Part A 68 (2007) 757–762
ground state more stable due to a partial negative charge on
the hydroxyl group (7). With increasing hydrogen-bonding
ability of the solvent, the ground state stabilizes more leading
to a hypsochromism. Thus the reversal in this case is observed
at ET(30) value of 37.6.
References
[1] K. Nishimoto, Bull. Chem. Soc. Jpn. 66 (1993) 1876.
[2] J. Gao, C. Alhambra, J. Am. Chem. Soc. 119 (1997) 2962.
[3] L. Da Silva, C. Machado, M.C. Rezende, J. Chem. Soc., Perkin Trans. 2
[4] J. Frank, Trans. Faraday Soc. 21 (1926) 536.
[5] M.S. Masoud, A.E. Ali, M.A. Shaker, M.A. Ghani, Spectrochim. Acta A
61 (2005) 3102.
[6] G.J. Demets, E.R. Triboni, E.B. Alvarez, G.M. Arantes, P.B. Filho, M.J.
Politi, Spectrochim. Acta A 63 (2006) 220.
[7] L.G.S. Brooker, G.H. Keyes, R.H. Sprague, R.H. Van Dyke, E. Van Lare,
G. Van Zandt, F.L. White, H.W.J. Cressmann, S.G. Dent, J. Am. Chem.
Soc. 73 (1951) 5332;
L.G.S. Brooker, G.H. Keyes, D.W. Heseltine, J. Am. Chem. Soc. 73 (1951)
5350.
[8] A. Botrel, A. Le Beuze, P. Jacques, H. Strub, J. Chem. Soc., Faraday Trans.
2 (80) (1984) 1235.
[9] H.G. Benson, J.N. Mu¨rrell, J. Chem. Soc., Faraday Trans. 2 (68) (1972)
137.
at ET(30) value of 37.0 [25].
Surprisingly the plot of ET(30) against ν¯max of 5 (Fig. 7)
shows a complete reversal of the corresponding plot for other
dyes (Figs. 5 and 6). The plot exhibits that there is a sharp
increase in ν¯max in nonpolar solvents with increase in polar-
ity, the trend in increase reduces in dipolar aprotic solvents,
and then there is a sharp decrease with increase in polarity
of hydroxylic solvents. The reversal in solvatochromism is
observed at 44.0 kcal/mol ET(30) value. Thus the reversal in sol-
vatochromism may be considered as a switch to explain either
structural transition of the dye due to solvent or a transition due
to solvent cage with differential polarity.
[10] P. Jacques, J. Phys. Chem. 90 (1986) 5535.
[11] V. Luzhkov, A. Warshel, J. Am. Chem. Soc. 113 (1991) 4491.
[12] J.O. Morley, J. Mol. Struct. (Theochem.) 304 (1994) 191.
[13] A. Masternak, G. Wenska, J. Milecki, B. Skalski, S. Franzen, J. Phys. Chem.
A 109 (2005) 759.
The analysis of the plots in Figs. 4–7 reveals some interesting
observations.
[14] V. Cavalli, D.C. Da Silva, C. Machado, V.G. Machado, V. Soldi, J. Fluoresc.
16 (2006) 77.
[15] B.K. Mishra, M. Kuanar, A. Mishra, G.B. Behera, Bull. Chem. Soc. Jpn.
69 (1996) 2581.
[16] A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, G.B. Behera, Chem.
Rev. 100 (2000) 1973.
[17] J.K. Mishra, A.K. Sahay, B.K. Mishra, Ind. J. Chem. A 30 (1991) 886.
[18] A. Mishra, S. Patel, R.K. Behera, B.K. Mishra, G.B. Behera, Bull. Chem.
Soc. Jpn. 70 (1997) 2913.
[19] A. Mishra, R.K. Behera, B.K. Mishra, G.B. Behera, J. Photochem. Photo-
biol. A: Chem. 121 (1999) 63.
[20] A. Mishra, P.K. Behera, R.K. Behera, B.K. Mishra, G.B. Behera, J. Pho-
tochem. Photobiol. A: Chem. 116 (1998) 79.
[21] S. Mohapatra, P.K. Behera, S. Das, B.K. Mishra, G.B. Behera, Indian J.
Chem. A 38 (1999) 815.
[22] P.K. Behera, S. Mohapatra, S. Patel, B.K. Mishra, J. Photochem. Photobiol.
A: Chem. 169 (2005) 253.
• The three distinctly grouped solvents due to their polarity
stabilize the ground and excited species of the dyes 2 and 3.
Thus the groups of solvents provide specific solvent cages,
wherein the changes in polarity of the medium have effect on
the electronic transition to different extent.
• In dye 4, the polar solvents cause a structural change of the
dye (7) for which there is a difference in the polarity switch.
• The electron-releasing vector in dye 5 provides a parallel
electron flow from methyl group and phenyl group to the
pyridinium unit whereas dye 2 experiences an electron flow
in series connection of the phenyl and methyl groups. In anal-
ogy to inverse relationship of electron flow in parallel and
series connection, the ν¯max experience a reversal trend with
respect to ET(30) scale in 2 and 5.
[23] M. Charton, Prog. Phys. Org. Chem. 16 (1987) 287.
[24] C. Reichardt, Chem. Rev. 94 (1994) 2319;
C. Reichardt, Chem. Soc. Rev. 21 (1992) 147;
Acknowledgements
C. Reichardt, S. Asharia-Faud, A. Blum, M. Eschner, A.M. Mehranpour, P.
Milart, T. Niem, G. Scha¨fer, M. Wilk, Pure Appl. Chem. 65 (1993) 2593;
C. Reichardt, Pure Appl. Chem. 76 (2004) 1903.
[25] L. Da Silva, C. Machado, M.C. Rezande, J. Chem. Soc., Perkin Trans. 2
(1995) 483.
The authors thank the Department of Science and Technology
and the University Grants Commission, New Delhi, for financial
support through FIST and DRS programs, respectively.