ORGANIC
LETTERS
2009
Vol. 11, No. 15
3210-3213
Access to Flavones via a
Microwave-Assisted, One-Pot
Sonogashira-Carbonylation-Annulation
Reaction
Emelia Awuah and Alfredo Capretta*
Department of Chemistry, McMaster UniVersity, Hamilton, Ontario, Canada L8S 4M1
Received May 20, 2009
ABSTRACT
Palladium complexes of 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phenyl-6-phosphaadamantane are shown to be effective catalytic systems facilitating
the sequential application of a microwave-assisted Sonogashira and carbonylative annulation reaction for the preparation of substituted flavones.
Flavones1 are a major group of secondary metabolites found
throughout the plant kingdom and have been shown to
possess a wide variety of biological activity.2 A number of
classical synthetic approaches to this family of compounds
exist. The Baker-Venkataraman3 method involves the
conversion of 2-hydroxyacetophenones into benzoyl esters,
rearrangement in base to 1,3-diphenylpropane 1,3-diones,
followed by cyclization in acid to yield the flavone ring
system.4 Alternatively, treatment of a 2-hydroxyacetophenone
and benzaldehyde under Claisen-Schmidt conditions yields
a 2-hydroxychalcone that can be oxidatively cyclized to yield
the flavone system.5 Both approaches utilize harsh conditions
such as strong bases, acid, and elevated temperatures. A
particularly attractive alternate approach involves the Pd-
catalyzed carbonylation6/cyclization reaction between 2-io-
dophenols and terminal alkynes.7 Given our work with
palladium complexes of 1,3,5,7-tetramethyl-2,4,8-trioxa-6-
phenyl-6-phosphaadamantane (PA-Ph)8 and their ability to
(4) (a) Lee, K. S.; Seo, S. H.; Lee, Y. H.; Kim, H. D.; Son, M. H.;
Chung, B. Y.; Lee, J. Y.; Jin, C.; Lee, Y. S. Bioorg. Med. Chem. Lett.
2005, 15, 2857–2860. (b) Zembower, D. E.; Zhang, H. J. Org. Chem. 1998,
63, 9300–9305.
(1) Andersen, Ø. M.; Markham, K. R. FlaVonoids: Chemistry, Bio-
chemistry, and Applications; CRC Press: Boca Raton, FL, 2006.
(2) (a) Galietta, L. J. V.; Springsteel, M. F.; Eda, M.; Niedzinski, E. J.;
By, K.; Haddadin, M. J.; Kurth, M. J.; Nantz, M. H.; Verkman, A. S. J. Biol.
Chem. 2001, 276, 19723–19728. (b) Griffin, R. J.; Fontana, G.; Golding,
B. T.; Guiard, S.; Hardcastle, I. R.; Leahy, J. J. J.; Martin, N.; Richardson,
C.; Rigoreau, L.; Stockley, M.; Smith, G. C. M. J. Med. Chem. 2005, 48,
569–585. (c) Guz, N. R.; Stermitz, F. R.; Johnson, J. B.; Beeson, T. D.;
Willen, S.; Hsiang, J. F.; Lewis, K. J. Med. Chem. 2001, 44, 261–268. (d)
Henry, E. C.; Gasiewicz, T. A. Arch. Biochem. Biophys. 2008, 472, 77–88.
(e) Hyup Joo, Y.; Kwan Kim, J.; Kang, S.-H.; Noh, M.-S.; Ha, J.-Y.; Kyu
Choi, J.; Min Lim, K.; Hoon Lee, C.; Chung, S. Bioorg. Med. Chem. Lett.
2003, 13, 413–417. (f) Yang, X.; Sun, Y.; Xu, Q.; Guo, Z. Org. Biomol.
Chem. 2006, 4, 2483–2491.
(5) (a) Cabrera, M.; Simoens, M.; Falchi, G.; Lavaggi, M. L.; Piro, O. E.;
Castellano, E. E.; Vidal, A.; Azqueta, A.; Monge, A.; de Cera´in, A. L.;
Sagrera, G.; Seoane, G.; Cerecetto, H.; Gonza´lez, M. Bioorg. Med. Chem.
2007, 15, 3356–3367. (b) Hemanth Kumar, K.; Perumal, P. T. Tetrahedron
2007, 63, 9531–9535. (c) Yao, N.; Song, A.; Wang, X.; Dixon, S.; Lam,
K. S. J. Comb. Chem. 2007, 9, 668–676.
(6) Barnard, C. F. J. Organometallics 2008, 27, 5402–5422.
(7) (a) Ciattini, P. G.; Morera, E.; Ortar, G.; Rossi, S. S. Tetrahedron
1991, 47, 6449–6456. (b) Liang, B.; Huang, M.; You, Z.; Xiong, Z.; Lu,
K.; Fathi, R.; Chen, J.; Yang, Z. J. Org. Chem. 2005, 70, 6097–6100. (c)
Miao, H.; Yang, Z. Org. Lett. 2000, 2, 1765–1768. (d) Torii, S.; Okumoto,
H.; Xu, L. H.; Sadakane, M.; Shostakovsky, M. V.; Ponomaryov, A. B.;
Kalinin, V. N. Tetrahedron 1993, 49, 6773–6784.
(3) (a) Baker, W. J. Chem. Soc. 1933, 1381–1389. (b) Mahal, H. S.;
Venkataraman, K. J. Chem. Soc. 1934, 1767–1769.
(8) Available from Cytec Canada Inc., PO Box 240, Niagara Falls,
Ontario, L2E 6T4, Canada.
10.1021/ol901043q CCC: $40.75
Published on Web 07/06/2009
2009 American Chemical Society