5348
V.L. Campo et al. / Tetrahedron 65 (2009) 5343–5349
Method B. Compound 12 (25 mg, 0.044 mmol) was reacted as
described in the general procedure (Section 4.2.2). The product 2
was obtained in 78% yield (8.0 mg, 0.034 mmol) after purification.
7.64 (2H, d, J 7.8 Hz, CH Fmoc arom.), 7.40–7.26 (9H, m, CH Fmoc
arom., CH Bn arom.), 5.81 (1H, d, J 8.7 Hz, NH Ser), 5.35 (1H, d, J
8.4 Hz, NHAc), 5.25 (1H, t, J3,4 9.6 Hz, H-3), 5.20 (2H, AB, JAB 12.2 Hz,
CH2Bn), 5.02 (1H, t, J3,4 10 Hz, H-4), 4.67 (1H, d, J1,2 8.4 Hz, H-1),
4.55–4.38 (3H, m, CH2 Fmoc, CH Ser), 4.28–4.19 (3H, m, H-6a, CH
Fmoc, CH2a Ser), 4.08 (1H, dd, J5,6b 2.2 Hz, J6a,6b 12.3 Hz, H-6b), 3.85
(1H, dd, J 2.7,10.8 Hz, CH2b Ser), 3.70 (1H, apparent t, J1,2, J2,3 10.0 Hz,
H-2), 3.64–3.59 (1H, m, H-5), 2.04, 2.03, 2.02, 1.82 (12H, 4s, COCH3).
dC (CDCl3, 100 MHz) 170.8, 170.7, 169.5, 169.4 (COCH3, COCH2Bn),
156.1 (CO Fmoc),143.7; 143.6; 141.3 (Cquat. Fmoc),135.3 (Cquat. Bn),
128.5, 128.4, 128.2, 127.7, 127.1, 125.1, 119.9 (CH Fmoc arom., CH Bn
arom.), 100.6 (C-1), 71.9, 71.7, (C-5, C-3), 68.9; 68.3 (C-4, CH2 Ser),
67.3 (CH2Bn), 66.7 (CH2 Fmoc), 61.8 (C-6), 54.6; 54.1 (C-2, CH Ser),
47.0 (CH Fmoc), 22.8–20.7 (COCH3). ESI-HRMS: calculated for
C39H42N2O13NH4 [MþNH4]þ 764.3031, found 764.3025.
25
Rf 0.15 [MeOH/DCM: 1:9 v/v]. [
a]
ꢁ124.6 (c 0.36, MeOH). dH
D
(DMSO, 400 MHz) 7.30–7.15 (5H, m, CH arom.), 5.00 (1H, t, J 5.7 Hz,
OH), 4.05 (1H, m, CH Phe), 3.66 (1H, m, CH Ser), 3.31–3.26 (1H, m,
CH2a Ser), 3.10 (1H, dd, J1 6.0 Hz, J2 13.5 Hz CH2a Phe), 2.98 (1H, dd, J1
4.6 Hz, J2 13.5 Hz CH2b Phe), 2.83 (1H, m, dd, J17.3 Hz, J2 11.4 Hz CH2b
Ser). dC (DMSO, 100 MHz) 129.8–126.3 (CH arom.), 62.9 (CH2 Ser),
56.9 (a-CH Ser), 55.2 (a-CH Phe), 39.6 (CH2 Phe). ESI-HRMS: cal-
culated for C12H15N2O3$[MþH]þ 235.1004, found 235.1083.
4.2.6. c(D-Phenylalanyl-L-seryl) (3)
Method A. Compound 13 (41 mg, 0.070 mmol) was reacted for
18 h as described in the general procedure (Section 4.2.2). The pure
product 3 was obtained in 53% yield (9.1 mg, 0.040 mmol) as an
amorphous solid.
Method B. Compound 13 (60 mg, 0.10 mol) was reacted as de-
scribed in the general procedure (Section 4.2.2). The product 3 was
4.3.2. N-[(9H-Fluoren-9-ylmethoxy)carbonyl]-
O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-
-serine benzyl ester (19)
Compound 14 (61 mg, 0.082 mmol) was treated with 20% pi-
D-phenylalanyl-
a-D-glucopyranosyl)-
L
obtained in 70% yield (17 mg, 0.074 mmol) after purification.
25
Rf 0.15 [MeOH/DCM 1:9 v/v]. [
a
]
D
ꢁ117.4 (c 0.35, MeOH). dH
peridine/DMF (0.5 mL) for removal of the NFmoc group. The re-
action mixture was stirred for 1 h at room temperature and then
purified by column chromatography (EtOAc/hexane, 7:3 v/v;
MeOH/DCM 1:9 v/v). The product (2-acetamido-2-deoxy-3,4,6-tri-
(DMSO, 400 MHz) 7.24–7.06 (5H, m, CH arom.), 5.00 (1H, sl, OH),
4.15 (1H, m, CH Phe), 3.59 (1H, dd, J1 3.0 Hz, J2 11.6 Hz, CH2a Ser),
3.42 (1H, dd, J1 2.8 Hz, J2 11.6 Hz, CH2b Ser), 3.15 (1H, dd, J1 3.8 Hz, J2
13.6 Hz, CH2a Phe), 3.06 (1H, m, CH Ser), 2.87 (1H, dd, J1 4.8 Hz, J2
13.6 Hz, CH2b Phe). dC (DMSO, 100 MHz) 129.9–126.4 (CH arom.),
O-acetyl-b-D-glucopyranosyl)-L-serine benzyl ester 17 was
obtained as a pale oil (32 mg, 0.061 mmol, 75%). PyBOP (37 mg,
0.071 mmol), HOBt (9.6 mg, 0.071 mmol), and compound 10
(27 mg, 0.070 mmol) were then added to 14 (30 mg, 0.057 mmol)
and dissolved in DMF (0.8 mL), being the reaction initiated with
the addition of DIEA (0.05 mL, 0.28 mmol). The mixture was
allowed to stir for 20 h at room temperature and purification by
column chromatography (EtOAc/hexane, 7:3 v/v) afforded the
62.7 (CH2 Ser), 56.3 (a-CH Ser), 54.9 (a-CH Phe), 37.6 (CH2 Phe). ESI-
HRMS: calculated for C12H15N2O3$[MþH]þ 235.1004, found
235.1083.
4.3. Synthesis of glycosylated diketopiperazines 4 and 5
4.3.1. N-[(9H-Fluoren-9-ylmethoxy)carbonyl]-O-(2-acetamido-
product 19 as an amorphous solid (38 mg, 0.043 mmol, 75%). Rf
25
3,4,6-tri-O-acetyl-2-deoxy-
ester (14) and N-[(9H-fluoren-9-ylmethoxy)carbonyl]-O-
(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- -glucopyranosyl)-
-serine benzyl ester (15)29
A mixture of 2-acetamido-2-deoxy-3,4,6-tri-O-acetyl-
copyranosyl chloride 16 (300 mg, 0.82 mmol) and N-(9-fluo-
renylmethoxycarbonyl)- -serine benzyl ester 6 (171 mg, 0.41 mmol)
a-D
-glucopyranosyl)-
L
-serine benzyl
0.36 [EtOAc/hexane, 7:3 v/v]. [
a
]
ꢁ5.0 (c 0.36, CHCl3). dH (CDCl3,
D
300 MHz) 7.68 (2H, d, J 7.7 Hz, CH Fmoc arom.), 7.45–7.41 (2H, m,
CH Fmoc arom.), 7.35–7.21 (14H, m, CH Fmoc arom., CH Phe arom.,
CH Bn arom.,), 5.84 (1H, d, J 8.8 Hz, NH Ser), 5.33 (1H, d, J 7.4 Hz,
NH Phe), 5.07 (2H, s, CH2 Bn), 5.01–4.96 (2H, m, H-3, H-4), 4.70
b-D
L
a-D-glu-
(1H, d, J 3.7 Hz, H-1), 4.44–4.34 (3H, m, H-6a, H-6b,
a-CH Phe),
L
4.20–3.94 (5H, m, H-5, -CH Ser, CH Fmoc, CH2 Fmoc), 3.84 (1H, dd,
a
in 1,2-dichloroethane (4.3 mL) was refluxed with mercuric bromide
(400 mg, 0.82 mmol) for 9 h and followed by TLC (EtOAc/hexane 7:3,
v/v). The resulting amber mixture was concentrated in vacuo and
the residue was purified by a silica gel column chromatography
(EtOAc/hexane 7:3, v/v). The products 14 (61 mg, 0.081 mmol, 20%)
and 15 (122 mg, 0.16 mmol, 40%) were obtained as amorphous
J1,2 3.3 Hz, J2,3 10.2 Hz, H-2), 3.74–3.66 (1H, m, CH2a Ser), 3.64–3.55
(1H, m, CH2b Ser), 3.11–2.94 (2H, m, CH2 Phe), 1.98, 1.97, 1.93, 1.92
(12H, 4s, COCH3). dC (CDCl3, 100 MHz) 129.2–127.1 (CH Fmoc arom.,
CH Phe arom., CH Bn arom.), 125.0, 119.8 (CH Fmoc arom.), 98.78
(C-1), 70.73 (C-3), 69.56 (C-2), 68.2 (CH2 Ser), 67.9 (C-4), 67.74 (CH2
Bn), 67.23 (C-6), 67.12 (C-5), 61.5 (CH2 Fmoc), 56.30 (a-CH Phe),
solids.
51.8 (a-CH Ser), 47.0 (CH Fmoc), 38.37 (CH2 Phe), 23.03–20.54
25
a-Glycoside 14. Rf 0.31 (EtOAc/hexane, 7:3 v/v). [
a
]
þ14.8 (c 1.0,
(COCH3). ESI-HRMS: calculated for C48H52N3O14 [MþH]þ 894.3443,
D
CHCl3). dH (CDCl3, 400 MHz) 7.66 (2H, d, J 7.5 Hz, CH Fmoc arom.),
7.62 (2H, d, J 6.0 Hz, CH Fmoc arom.), 7.45–7.26 (9H, m, CH Fmoc
arom., CH Bn arom.), 5.95 (1H, d, J 9.3 Hz, NHAc), 5.85 (1H, d, J
9.5 Hz, NH Ser), 5.24–5.16 (3H, m, AB, JAB 12.2 Hz, CH2Bn, H-3), 5.08
(1H, t, J3,4 9.4 Hz, H-4), 4.70 (1H, d, J1,2 3.6 Hz, H-1), 4.60 (1H, m, CH
Ser), 4.45 (2H, m, CH2 Fmoc), 4.30 (1H, dt, J1,2 3.6 Hz, J2,3 9.4 Hz, H-
2), 4.25 (1H, t, J 7.3 Hz, CH Fmoc), 4.20–4.06 (3H, m, CH2a Ser, H-6a,
H-6b), 3.88 (2H, m, CH2bSer), 3.84 (1H, m, H-5), 2.06, 2.05, 2.03, 2.02
(12H, 4s, COCH3). dC (CDCl3, 100 MHz) 171.5, 170.9, 170.8, 170.6
(COCH3), 169.5 (COCH2Bn), 156.7 (CO Fmoc), 143.6, 141.3 (Cquat.
Fmoc), 134.5 (Cquat. Bn), 129.2, 129.1, 128.8, 128.0, 127.3, 125.3,
120.2 (CH Fmoc arom., CH Bn arom.), 99.5 (C-1), 71.4 (C-4), 68.5,
68.4 (C-3, C-5), 68.0 (CH2Bn), 67.9 (CH2b Ser), 67.7 (CH2 Fmoc), 62.3
(CH2a Ser), 62.2 (C-6), 55.0 (CH Ser), 52.5 (C-2), 47.3 (CH Fmoc),
23.3–20.8 (COCH3). ESI-HRMS: calculated for C39H42N2O13Na
found 894.3406.
4.3.3. N-[(9H-Fluoren-9-ylmethoxy)carbonyl]-
O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-
-serine benzyl ester (20)
The NFmoc deprotection of the building block 15 was first re-
D-phenylalanyl-
b-D-glucopyranosyl)-
L
alized by treatment with 20% piperidine/DMF (0.3 mL). Starting
from 50 mg (0.067 mmol) of 15, the product (2-acetamido-2-de-
oxy-3,4,6-tri-O-acetyl-b-D-glucopyranosyl)-L-serine benzyl ester 18
was obtained in 85% yield (29.7 mg, 0.057 mmol) as an oil. Then,
following the procedure described for compound 17, from 28 mg
(0.053 mmol) of 18, PyBOP (37.2 mg, 0.071 mmol), HOBt (9.6 mg,
0.071 mmol), compound 10 (27.6 mg, 0.071 mmol), and DIEA
(0.05 mL, 0.28 mmol), it was possible to obtain 32.5 mg
(0.036 mmol, 68%) of the product 20. Rf 0.37 [EtOAc/hexane, 7:3 v/
25
[MþNa]þ 764.2579, found 764.2593.
v]. [
a]
ꢁ13.0 (c 0.4, CHCl3). dH (CDCl3, 300 MHz) 7.69 (2H, d, J
D
25
b-Glycoside 15. Rf 0.25 (EtOAc/hexane, 7:3 v/v). [
a
]
ꢁ4.6 (c 1.0,
7.3 Hz, CH Fmoc arom.), 7.45–7.14 (16H, m, CH Fmoc arom., CH Bn
arom., CH Phe arom.), 5.44 (1H, d, J 7.7 Hz, NH Phe), 5.22 (1H, t, J3,4
D
CHCl3). dH (CDCl3, 400 MHz) 7.77 (2H, d, J 7.8 Hz, CH Fmoc arom.),