Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C8CC00271A
COMMUNICATION
Chemical Communications
Yorimitsu and A. Osuka, Chem. Eur. J., 2014, 20, 13146; (d)
M. Bhanuchandra, A. Baralle, S. Otsuka, K. Nogi, H. Yorimitsu
and A. Osuka, Org. Lett., 2016, 18, 2966.
of decarbonylative thioetherification to selectively generate
thioethers from readily available carboxylic acids.5,6,10
In conclusion, we have reported a general method for
decarbonylative thioetherification by C–S cleavage using a
commercially-available, user-friendly, inexpensive, air- and
moisture-stable nickel(II) precatalyst. The process provides a
synthetic entry to the biologically-relevant thioether functional
group exploiting abundant carboxylic acids as ultimate cross-
coupling precursors. In view of the synthetic utility of
thioethers and Ni(II) precatalysts, we anticipate that the
method will be of broad interest.28 Further studies on related
decarbonylative cross-coupling transformations are ongoing.
Rutgers University and the NSF (CAREER CHE-1650766) are
acknowledged for support.
10 (a) H. Ochiai, Y. Uetake, T. Niwa and T. Hosoya, Angew.
Chem. Int. Ed., 2017, 56, 2482; See, also: (b) Y. Uetake, T.
Niwa and T. Hosoya, Org. Lett., 2016, 18, 2758.
11 (a) J. A. Fernandez-Salas, A. J. Eberhart and D. J. Procter, J.
Am. Chem. Soc., 2016, 138, 790; (b) L. Shang, Y. Chang, F.
Luo, J. N. He, X. Huang, L. Zhang, L. Kong, K. Li and B. Peng, J.
Am. Chem. Soc., 2017, 139, 4211; (c) T. Yanagi, S. Otsuka, Y.
Kasuga, K. Fujimoto, K. Murakami, K. Nogi, H. Yorimitsu and
A. Otsuka, J. Am. Chem. Soc., 2016, 138, 14582; For excellent
study on metal-free fluoroalkylthiolation, see: (d) D. Zhu, Y.
Gu, L. Lu and Q. Shen, J. Am. Chem. Soc., 2015, 137, 10547.
12 (a) S. Z. Tasker, E. A. Standley and T. F. Jamison, Nature,
2014, 509, 299; (b) V. P. Ananikov, ACS Catal., 2015, 5, 1964.
13 For an excellent monograph on cross-couplings, see: (a) T. J.
Colacot, New Trends in Cross-Coupling, RSC, 2015; For
leading reviews, see: (b) P. G. Gildner and T. J. Colacot,
Organometallics, 2015, 34, 5497; (c) H. Li, C. C. C. Johansson-
Notes and references
1
For leading reviews on biological activity of thioethers, see:
(a) E. A. Ilardi, E. Vitaku and J. T. Njardson, J. Med. Chem.,
2014, 57, 2832; (b) M. Feng, B. Tang, S. H. Liang and X. Jiang,
Curr. Top. Med. Chem., 2016, 16, 1200.
Seechurn and T. J. Colacot, ACS Catal., 2012,
14 D. Zim, V. R. Lando, J. Dupont and A. L. Monteiro, Org. Lett.,
2001, , 3049.
2, 1147.
3
2
3
L. Brunton, B. Chabner and B. Knollman, Goodman and
Gilman’s The Pharmacological Basis of Therapeutics;
MacGraw-Hill, New York, 2010.
For excellent reviews on C–S bond formation, see: (a) C. C.
Eichman and J. P. Stambuli, Molecules, 2011, 16, 590; (b) J. P.
Stambuli, In New Trends in Cross-Coupling, T. J. Colacot, The
Royal Society of Chemistry, 2015, p. 254; (c) I. P. Beletskaya
and V. P. Ananikov, Chem. Rev., 2011, 111, 1596.
15 R. L. Jezorek, N. Zhang, P. Leowanawat, M. H. Bunner, N.
Gutsche, A. K. R. Pesti, J. T. Olsen and V. Percec, Org. Lett.,
2014, 16, 6326.
16 N. H. Park, G. Teverovskiy and S. L. Buchwald, Org. Lett.,
2014, 16, 220.
17 E. A. Stadley, S. J. Smith, P. Müller and T. F. Jamison,
Organometallics, 2014, 33, 2012.
18 J. D. Shields, E. E. Gray and A. G. Doyle, Org. Lett., 2015, 17
2166.
19 (a) J. Magano and S. Monfette, ACS Catal., 2015, 5, 3120; For
,
4
For recent selected examples of thioether synthesis, see: (a)
M. Jouffroy, C. B. Kelly and G. A. Molander, Org. Lett., 2016,
18, 876; (b) M. S. Oderinde, M. Frenette, D. W. Robbins, B.
a review on well-defined, bench-stable precatalysts, see: (b)
N. Hazari, P. R. Melvin and M. M. Beromi, Nat. Rev. Chem.,
2017, 1, 25.
Aquila and J. W. Johannes, J. Am. Chem. Soc., 2016, 138
,
1760; (c) B. Liu, C. H. Lim and G. M. Miyaka, J. Am. Chem.
Soc., 2017, 139, 13616; (d) C. Uyeda, Y. Tan, G. C. Fu and J. C.
Peters, J. Am. Chem. Soc., 2013, 135, 9548; (e) M. A.
Fernandez-Rodriguez, Q. Shen and J. F. Hartwig, J. Am. Chem.
Soc., 2006, 128, 2180; For a leading report on C–S
construction by C–H activation, see: (f) P. Saravanan and P.
Anbarasan, Org. Lett., 2014, 16, 848.
20 (a) G. Meng and M. Szostak, Angew. Chem. Int. Ed., 2015, 54
,
14518; (b) C. Liu, and G. Meng and M. Szostak, J. Org. Chem.,
2016, 81, 12023.
21 (a) S. Shi, G. Meng and M. Szostak, Angew. Chem. Int. Ed.,
2016, 55, 6959; (b) G. Meng and M. Szostak, Org. Lett., 2016,
18, 796; (c) G. Meng and M. Szostak, ACS Catal., 2017,
22 S. Shi and M. Szostak, Org. Lett., 2017, 19, 3095.
7, 7251.
5
For reviews, see: (a) R. Takise, K. Muto and J. Yamaguchi,
Chem. Soc. Rev., 2017, 46, 5864; (b) W. I. Dzik, P. P. Lange
and L. J. Gooßen, Chem. Sci., 2012, 3, 2671; For the seminal
23 C. Liu and M. Szostak, Angew. Chem. Int. Ed., 2017, 56, 12718.
24 For reviews, see: (a) G. Meng, S. Shi and M. Szostak, Synlett,
2016, 27, 2530; (b) C. Liu and M. Szostak, Chem. Eur. J., 2017,
23, 7157; For selected examples of decarbonylative cross-
coupling of amides, see: (c) A. Dey, S. Sasmai, K. Seth, G. K.
decarbonylative cross-coupling of aryl esters, see: (c) K.
Amaike, K. Muto, J. Yamaguchi and K. Itami, J. Am. Chem.
Soc., 2012, 134, 13573; For additional examples, see: (d) A.
Dermenci and G. Dong, Sci. China Chem., 2013, 56, 685.
Lahiri and D. Maiti, ACS Catal., 2017, 7, 433; (d) H. Yue, L.
6
7
For a comprehensive review, see: L. J. Goo
and K. Gooßen, Angew. Chem. Int. Ed., 2008, 47, 3100.
For reviews, see: (a) S. G. Modha, V. P. Mehta and E. V. Van
der Eycken, Chem. Soc. Rev., 2013, 42, 5042; (b) L. Wang, W.
He and Z. Yu, Chem. Soc. Rev., 2013, 42, 599; (c) S. R.
ßen, N. Rodriguez
Guo, H. H. Liao, Y. Cai, C. Zhu and M. Rueping, Angew. Chem.
Int. Ed., 2017, 56, 4282; (e) H. Yue, L. Guo, S. C. Lee, X. Liu
and M. Rueping, Angew. Chem. Int. Ed., 2017, 56, 3972; (f)
W. Srimontree, A. Chatupheeraphat, H. H. Liao and M.
Rueping, Org. Lett., 2017, 19, 3091; For selected examples of
decarbonylative cross-coupling of esters, see: (g) K. Muto, J.
Yamaguchi, D. G. Musaev and K. Itami, Nat. Commun., 2015,
Dubbaka and P. Vogel, Angew. Chem. Int. Ed., 2005, 44
7674; For selected relevant examples, see: (d) K. Osakada, T.
Yamamoto and A. Yamamoto, Tetrahedron Lett., 1987, 28
,
,
6
, 7508; (h) T. Okita, K. Kumazawa, R. Takise, K. Muto, K.
6321; (e) E. Wenkert and D. Chianelli, J. Chem. Soc., Chem.
Commun., 1991, 627; (f) Y. Minamo, H. Kuniyasu, K. Miyafuji
and N. Kambe, Chem. Commun., 2009, 3080.
Itami and J. Yamaguchi, Chem. Lett., 2017, 46, 218.
25 N. Ichiishi, C. A. Malapit, L. Wozniak and M. S. Sanford, Org.
Lett., 2018, 20, 44.
26 B. Cryer and M. Feldman, Am. J. Med., 1998, 104, 413.
27 R. Takise, R. Isshiki, K. Muto, K. Itami and J. Yamaguchi, J.
Am. Chem. Soc., 2017, 139, 3340.
28 We hypothesize that the mechanism involves selective
oxidative addition into the C–S bond (cf. C(aryl)–C(carbonyl)).
For precedent reports on C–S oxidative addition, see: refs.
7a–c, f and references cited therein.
8
9
(a) Z. Lian, B. N. Bhawal, P. Yu and B. Morandi, Science, 2017,
356, 1059; For a pertinent reversible process involving
decarbonylation, see: (b) X. Fang, B. Cacherat and B.
Morandi, Nat. Chem., 2017,
therein.
9, 1105 and references cited
(a) T. Sugahara, K. Murakami, H. Yorimitsu and A. Osuka,
Angew. Chem. Int. Ed., 2014, 53, 9329; (b) K. Gao, H.
Yorimitsu and A. Osuka, Angew. Chem. Int. Ed., 2016, 55,
4573; See, also: (c) S. Otsuka, D. Fujino, K. Murakami, H.
Decarbonylative Coupling via Selective C
O
−
S Cleavage
[Ni], -CO
S
R'
R'
S
Ar
Ar
4 | Chem. Commun., 2018, 00, 1-3
This journal is © The Royal Society of Chemistry 2018
23 examples
ꢀ selective C−S cleavage ꢀ modular, air-stable Ni precatalyst
ꢀ carboxylic acid precursors ꢀ broad tolerance ꢀ high generality
Please do not adjust margins