the Re
´
gion Alsace (T.-T.-T. N). We thank Dr P. Baxter for
fruitful discussions, A. Rameau and C. Foussat for the
chromatography experiments, and Dr P. Schultz, IGBMC,
Illkirch, for the use of the cryofracturing apparatus.
Notes and references
1 S. Iijima, Nature, 1991, 354, 56–58.
2 S. Iijima and T. Ichihashi, Nature, 1993, 363, 603–605.
3 D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy,
J. Vazquez and R. Beyers, Nature, 1993, 363, 605–607.
4 R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science,
2002, 297, 787–792.
5 I. W. Eugenii Katz, ChemPhysChem, 2004, 5, 1084–1104.
6 M. Moniruzzaman and K. I. Winey, Macromolecules, 2006, 39,
5194–5205.
7 D. Tasis, N. Tagmatarchis, A. Bianco and M. Prato, Chem. Rev.,
2006, 106, 1105–1136.
8 T. Shimizu, M. Masuda and H. Minamikawa, Chem. Rev., 2005,
105, 1401–1443.
9 J. P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara,
T. Shimomura, K. Ito, T. Hashizume, N. Ishii and T. Aida,
Science, 2004, 304, 1481–1483.
10 P. Terech, A. De Geyer, B. Struth and Y. Talmon, Adv. Mater.,
2002, 14, 495–498.
Scheme 2 Summary of the reactions and spontaneous self-assemblies
involving compounds 2, 4 and 5. (a) Composition of the tubes: 4/2 67/33.
(b) Composition of the tubes 5/2 : 81/18. Nanotubes containing 4 or 5
can be formed only from the reaction with nanotubes.
11 A. Singh, E. M. Wong and J. M. Schnur, Langmuir, 2003, 19,
1888–1898.
12 M. Reches and E. Gazit, Science, 2003, 300, 625–627.
13 C. Valery, M. Paternostre, B. Robert, T. Gulik-Krzywicki,
T. Narayanan, J. C. Dedieu, G. Keller, M. L. Torres, R. Cherif-
Cheikh, P. Calvo and F. Artzner, Proc. Natl. Acad. Sci. U. S. A.,
2003, 100, 10258–10262.
14 E. M. Wilson-Kubalek, R. E. Brown, H. Celia and R. A. Milligan,
Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 8040–8045.
15 P. Ringler, W. Muller, H. Ringsdorf and A. Brisson, Chem.–Eur.
J., 1997, 3, 620–625.
16 J. D. Hartgerink, E. Beniash and S. I. Stupp, Science, 2001, 294,
1684–1688.
17 S. Vauthey, S. Santoso, H. Gong, N. Watson and S. Zhang, Proc.
Natl. Acad. Sci. U. S. A., 2002, 99, 5355–5360.
18 H. Fenniri, B.-L. Deng and A. E. Ribbe, J. Am. Chem. Soc., 2002,
124, 11064–11072.
are disassembled, cannot be re-assembled from the same
constituting molecules, and thus are metastable although they
are kinetically stable (for several weeks). This behavior can be
explained by the fact that the nanotubes have a crystalline
array as has been shown by WAXS.21
The molecules react by their end groups, but the structure is
too rigid to allow the reorganization in different phases or
larger nanotubes. When a hydroxyl group is introduced
instead of the alkyne, the resulting compound, forms
precipitates instead of nanotubes, as 5 does, which suggests
that polar groups at the end of the ester chain prevent the
formation of the nanotubes.
19 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int.
Ed., 2001, 40, 2004–2021.
In conclusion, we have shown that the introduction of azido
and alkyne groups into compounds able to self-assemble into
nanotubes does not perturb the molecular packing: these
analogues form nanotubes that have dimensions comparable
to those formed from the parent compounds and that are now
functional. They react with azides or alkynes to yield
nanotubes with dimensions similar to the starting tubes. This
illustrates the high efficiency of the CuAAC even in
heterogeneous sol–gel conditions and in an alkane, where
the catalyst is sparingly soluble. It is to the best of our
knowledge the only example of click reaction in cyclohexane.
These new self-assemblies are metastable, but the mild
reaction conditions prevent their reorganization toward more
stable shapes or mixtures. This approach allows one to obtain
highly functionalized nanotubes and opens new avenues to
synthesize new functional nanomaterials.
20 R. Huisgen, in 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa,
Wiley-Interscience, New York, 1984, vol. 1, pp. 1–176.
21 J. F. Lutz, Angew. Chem., Int. Ed., 2007, 46, 1018–1025.
22 D. D. Diaz, K. Rajagopal, E. Strable, J. Schneider and M. G. Finn,
J. Am. Chem. Soc., 2006, 128, 6056–6057.
23 N. Diaz, F. X. Simon, M. Schmutz, M. Rawiso, G. Decher,
J. Jestin and P. J. Me
3260–3264.
24 R. Schmidt, F. B. Adam, M. Michel, M. Schmutz, G. Decher and
P. J. Mesini, Tetrahedron Lett., 2003, 44, 3171–3174.
25 R. Schmidt, G. Decher and P. J. Mesini, Tetrahedron Lett., 1999,
40, 1677–1680.
26 R. Schmidt, M. Schmutz, M. Michel, G. Decher and P. J. Me
Langmuir, 2002, 18, 5668–5672.
27 M. Schmutz and P. J. Mesini, in Handbook of Cryopreparation
´
sini, Angew. Chem., Int. Ed., 2005, 44,
´
´
´
sini,
´
Methods for Electron Microscopy, ed. A. Cavalier, D. Spehner and
B. M. Humbel, Francis and Taylor CRC press, New York, 2008.
28 P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel,
´
B. Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless and V. V. Fokin,
Angew. Chem., Int. Ed., 2004, 43, 3863.
29 S. Binauld, D. Damiron, T. Hamaide, J.-P. Pascault, E. Fleury and
E. Drockenmuller, Chem. Commun., 2008, 4138–4140.
This work was supported by a PhD fellowship from the
Ministere de l’Education (F.-X. S.) and by a fellowship from
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 3457–3459 | 3459