2348
M. Emin Günay et al. / Journal of Organometallic Chemistry 694 (2009) 2343–2349
NCHCHNCH3]; 6.04 [d, 1H, J = 8 Hz, C6H4]; 6.38 [s, 2H,
NCH2C6H2(CH3)3]; 6.75 [t, 1H, J = 8 Hz, C6H4]; 6.83 [s, 2H,
NCH2C6H4]; 6.88 [s, 2H, C6H2(CH3)3]; 6.95 [t, 1H, J = 8 Hz, C6H4];
7.02 [d, 1H, J = 8 Hz, C6H4]. 13C NMR (d, CDCl3): 20.2 [C6H2(CH3)3-
o-CH3]; 21.2 [C6H2(CH3)3-p-CH3]; 38.9 [NCH2C6H2(CH3)3]; 49.7
[NCH3]; 50.3 [CH2N(CH3)2]; 50.5 [CH2N(CH3)2]; 72.4 [CH2N(CH3)2];
119.5 [NCHCHNCH3]; 121.5 [NCHCHNCH3]; 122.5, 123.9, 125.7,
128.3, 129.5, 135.9, 138.6, 138.8, 148.8, 148.9 [Ar–C]; 173.1 [Pd–
Ccarbene]. Anal. Calc. for C23H30ClN3Pd (490.37): C, 56.33; H, 6.17;
N, 8.57. Found: C, 55.98; H, 5.95; N, 8.13%.
lengths at 0.96, 0.97 and 0.93 Å for CH3, CH2 and aromatic CH,
respectively. The displacement parameters of the H atoms were
constrained as Uiso(H) = 1.2Ueq (1.5Ueq for methyl) of the carrier
atom. Data collection: X-AREA [42]; cell refinement: X-AREA; data
reduction: X-RED32 [44]; molecular graphics: ORTEP-3 for Windows
[45]; software used to prepare material for publication: WINGX
[46] and PLATON [47].
Acknowledgments
Funding of our research from the TUBITAK (Project No.:
104T203) and Adnan Menderes University (Project Nos.: FEF-
07006, FEF-07013 and FBE-08001) is gratefully acknowledged.
4.4.7. Compound 7b
Yield: 0.178 g, 90%, m.p.: 205–206 °C. 1H NMR (d, 400 MHz,
CDCl3): 2.15 [s, 6H, C6H(CH3)4-o-CH3]; 2.22 [s, 6H, C6H (CH3)4-m-
CH3]; 2.85 [s, 3H, CH2N(CH3)2]; 2.86 [s, 3H, CH2N(CH3)2]; 3.98 [s,
3H, NCH3]; 5.46 [d, 1H, J = 16 Hz, NCHCHNCH3]; 5.75 [d, 1H,
J = 16 Hz, NCHCHNCH3]; 6.06 [d, 1H, J = 8 Hz, C6H2], 6.37 [s, 2H,
NCH2C6H(CH3)4]; 6.77 [t, 1H, J = 8 Hz, C6H2]; 6.81 [s, 2H, NCH2C6H4];
6.98 [t, 1H, J = 8 Hz, C6H2]; 6.99 [s, 1H, C6H(CH3)4]; 7.03 [d, 1H,
J = 8 Hz, C6H2]. 13C NMR (d, 100 MHz, CDCl3): 14.9 [C6H(CH3)4-o-
CH3]; 19.4 [C6H(CH3)4-m-CH3]; 37.7 [NCH2C6H(CH3)4]; 49.1 [NCH3];
49.2 [CH2N(CH3)2]; 71.2 [CH2N(CH3)2]; 118.5 [NCHCHNCH3]; 120.1
[NCHCHNCH3]; 121.3, 122.7, 124.5, 129.8, 131.2, 133.2, 133.6,
134.8, 147.6, 147.7 [Ar–C]; 171.8 [Pd–Ccarbene]. Anal. Calc. for
C24H32ClN3Pd (504.40): C, 57.15; H, 6.39; N, 8.33. Found: C, 56.88;
H, 6.11; N, 8.03%.
Appendix A. Supplementary data
CCDC 699017 and 699018 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
ated with this article can be found, in the online version, at
References
[1] A.C. Cope, R.W. Siekman, J. Am. Chem. Soc. 87 (1965) 3272.
[2] A.C. Cope, E.C. Friedrich, J. Am. Chem. Soc. 90 (1968) 909.
[3] J. Dupont, C.S. Consorti, J. Spencer, Chem. Rev. 105 (2005) 2527.
[4] O. Navarro, N. Marion, Y. Oonishi, R.A. Kelly III, S.P. Nolan, J. Org. Chem. 71
(2006) 685.
4.4.8. Compound 7c
Yield: 0.172 g, 85%, m.p.: 225–226 °C. 1H NMR (d, 400 MHz,
CDCl3): 2.19 [s, 6H, C6(CH3)5-o-CH3]; 2.21 [s, 6H, C6(CH3)5-m-
CH3]; 2.25 [s, 3H, C6(CH3)5-p-CH3]; 2.85 [s, 6H, CH2N(CH3)2]; 3.97
[s, 3H, NCH3]; 5.46 [d, 1H, J = 16 Hz, NCHCHNCH3]; 5.76 [d, 1H,
J = 16 Hz, NCHCHNCH3]; 6.04 [d, 1H, J = 8 Hz, C6H2]; 6.40 [s, 2H,
NCH2C6(CH3)5]; 6.77 [t, 1H, J = 8 Hz, C6H2]; 6.80, [s, 2H, NCH2C6H4];
6.96 [t, 1H, J = 8 Hz, C6H2], 7.03 [d, 1H, J = 8 Hz, C6H2]. 13C NMR (d,
100 MHz, CDCl3): 17.0 [C6(CH3)5-o-CH3]; 17.2 [C6(CH3)5-m-CH3];
17.3 [C6(CH3)5-p-CH3]; 38.9 [NCH2C6(CH3)5]; 50.4 [CH2N(CH3)2];
50.9 [NCH3]; 72.4 [NCH2C6H4]; 119.9 [NCHCHNCH3]; 121.2
[NCHCHNCH3]; 122.5, 123.9, 125.7, 128.4, 133.2, 134.3, 135.9,
140.0, 148.8, 148.9 [Ar–C]; 172.9 [Pd–Ccarbene]. Anal. Calc. for
C25H34ClN3Pd (518.43): C, 57. 92; H, 6.61; N, 8.11. Found: C,
57.81; H, 6.45; N, 7.98%.
[5] I.P. Beletskaya, A.V. Cheprakov, J. Organomet. Chem. 689 (2004) 4055.
[6] S. Iyer, A. Jayanthi, Synlett (2003) 1125.
[7] H. Palencia, F. Garcia-Jimenez, J.M. Takacs, Tetrahedron Lett. 45 (2004) 3849.
[8] G.D. Frey, J. Schütz, W.A. Herrmann, J. Organomet. Chem. 691 (2006) 2403.
[9] J.-C. Shi, P.-Y. Yang, Q. Tong, Y. Wu, Y. Peng, J. Mol. Catal. A: Chem. 259 (2006) 7.
[10] X.-H. Cao, Y. Zheng, H.-W. Yu, J.-C. Shi, J. Coord. Chem. 60 (2007) 207.
[11] I. Özdemir, S. Demir, B. Çetinkaya, J. Mol. Catal. A: Chem. 215 (2004) 45.
[12] C.-Y. Liao, K.-T. Chan, C.-Y. Tu, Y.-W. Chang, C.-H. Hu, H.M. Lee, Chem. Eur. J. 15
(2009) 405.
[13] L. Ray, S. Barman, M.M. Shaikh, P. Ghosh, Chem. Eur. J. 14 (2008) 6646.
[14] I. Özdemir, S. Demir, S. Yasßar, B. Çetinkaya, Appl. Organomet. Chem. 19(2005) 55.
[15] I. Özdemir, N. Gürbüz, T. Seçkin, B. Çetinkaya, Appl. Organomet. Chem. 19
(2005) 633.
[16] E.A.B. Kantchev, G.-R. Peh, C. Zhang, J.Y. Ying, Org. Lett. 10 (2008) 3949.
[17] E.A.B. Kantchev, J.Y. Ying, Organometallics 28 (2009) 289.
[18] F.E. Hahn, M.C. Jahnke, Angew. Chem. Int. Ed. 47 (2008) 3122.
[19] P. de Fremont, N.M. Scott, E.D. Stevens, T. Ramnial, O.C. Lightbody, C.L.B.
Macdonald, J.A.C. Clyburne, C.D. Abernethy, S.P. Nolan, Organometalllics 24
(2005) 6301.
[20] J.C. Garrison, W.J. Youngs, Chem. Rev. 105 (2005) 3978.
[21] A.R. Chianese, X. Li, M.C. Janzen, J.W. Faller, R.H. Crabtree, Organometallics 22
(2003) 1663.
[22] P. de Frémont, N. Marion, S.P. Nolan, Coord. Chem. Rev. 253 (2009) 862.
[23] F.E. Hahn, C. Radloff, T. Pape, A. Hepp, Chem. Eur. J. 14 (2008) 10900.
[24] H.M.J. Wang, I.J.B. Lin, Organometallics 17 (1998) 972.
[25] F.E. Hahn, M. Foth, J. Organomet. Chem. 585 (1999) 241.
[26] H.V. Huynh, D. Le Van, F.E. Hahn, T.S.A. Hor, J. Organomet. Chem. 689 (2004)
1766.
[27] H.V. Huynh, J.H.H. Ho, T.C. Neo, L.L. Koh, J. Organomet. Chem. 690 (2005) 3854.
[28] D.S. McGuinness, M.J. Green, K.J. Cavell, B.W. Skelton, A.H. White, J.
Organomet. Chem. 565 (1998) 165.
[29] M. Dinçer, N. Özdemir, M.E. Günay, B. Çetinkaya, O. Büyükgüngör, Acta
Crystallogr. C61 (2006) m373.
[30] M. Dinçer, N. Özdemir, S. Gülcemal, B. Çetinkaya, Acta Crystallogr. C63 (2007)
m228.
4.5. General procedure for the Suzuki coupling reactions
In a typical run, a two-necked 25 mL flask fitted with a reflux
condenser and septum was charged with aryl halide (0.5 mmol),
phenylboronic acid (0.75 mmol), Cs2CO3 (1.5 mmol), diethylenegl-
icol di-n-butyl ether (0.3 mmol, internal standard) and the pallada-
cyclic catalyst (1 mol%) in 3 mL of 2-propanol were added. The
flask was placed in a preheated oil bath (80 °C) under an argon
atmosphere. At the completion of the reaction, the mixture was
cooled, added 2-propanol, filtered through a pad of silica gel with
copious washing, then concentrated and purified by flash chroma-
tography on silica gel. The reactions were monitored by gas chro-
matography and the yields were based on aryl bromide.
[31] W.A. Herrmann, T. Weskamp, V.P.W. Böhm, Adv. Organomet. Chem. 48 (2001) 1.
[32] N. Fröhlich, U. Pidun, M. Stahl, G. Frenking, Organometallics 16 (1997) 442.
[33] C. Heinemann, T. Müller, Y. Apeloig, H. Schwarz, J. Am. Chem. Soc. 118 (1996)
2023.
4.6. X-ray crystal structure determination
[34] C. Böhme, G. Frenking, J. Am. Chem. Soc. 118 (1996) 2039.
[35] N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 20 (1979) 3437.
[36] M. Beller, H. Fischer, W.A. Herrmann, K. Öfele, C. Brossmer, Angew. Chem., Int.
Ed. Engl. 34 (1995) 1848.
[37] M.S. Viciu, G.A. Grasa, S.P. Nolan, Organometallics 20 (2001) 3607.
[38] O. Navarro, H. Kaur, P. Mahjoor, S.P. Nolan, J. Org. Chem. 69 (2004) 3173.
[39] I. Aiello, A. Crispini, M. Ghedini, M. La Deda, F. Barigelletti, Inorg. Chim. Acta
308 (2000) 121.
Diffraction data for 6c and 7c were collected on a STOE IPDS II
diffractometer using graphite-monochromated Mo K
a radiation
(k = 0.71073 Å) at 296 K. The structures were solved by direct-
methods using program SHELXS-97 [42]. All non-hydrogen atoms
were refined anisotropically by full-matrix least-squares methods
using program SHELXL-97 [43]. All hydrogen atoms were positioned
geometrically and treated using a riding model, fixing the bond
[40] A. Mentes, R.D.W. Kemmitt, J. Fawcett, D.R. Russell, J. Mol. Struct. 693 (2004) 241.