CLUSTER
Enantioselective Friedel–Crafts Alkylation of Pyrroles
1641
Brønsted base activation
SiPh3
SiPh3
O
N
H
O
O
Ar
O
Ar
P
P
N
N
2
O
H
SO2
O H
SO2
O
O
N
N
SiPh3
Brønsted acid activation
SiPh3
Scheme 5 Assumed transition state for aza-Friedel–Crafts alkylation of N-(2-pyridinesulfonyl)imine 1a,g–m
uct. This result shows that the reactivity of imines is effec-
tively enhanced by the bidentate coordination between a
chiral phosphoric acid such as a Brønsted acid and the 2-
pyridylsulfonyl group. On the other hand, the reaction of
1a with N-methylpyrrole did not afford the product
(Table 1, entries 3 vs. 13). This result implies that hydro-
gen bonding between pyrrole and the phosphoric acid 3b
plays a key role in the reactivity of pyrrole, namely, the
oxygen in the chiral phosphoric acid 3b as a Brønsted base
activates pyrrole by coordination with the NH proton in
pyrrole. Therefore, the chiral phosphoric acid 3b would
act as a dual activating organocatalyst. From the above
consideration, the assumed transition state for the enanti-
oselective aza-Friedel–Crafts alkylation using 3b is
shown in Scheme 5. Further studies are required to fully
elucidate the mechanistic detail of aza-Friedel–Crafts
alkylation of pyrroles.
References and Notes
(1) (a) Della Bella, D. Boll. Chim. Farm. 1972, 111, 5.
(b) Guzman, A.; Yuste, F.; Toscano, R. A.; Young, J. M.;
Vanhorn, A. R.; Muchowski, J. M. J. Med. Chem. 1986, 29,
589. (c) Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D.
Pharmaceutical Substances, 4th ed.; Thieme: New York,
2001. (d) Katritzky, A. R.; Jain, R.; Xu, Y.; Steel, P. J.
J. Org. Chem. 2002, 67, 8220.
(2) For recent reviews on asymmetric Friedel–Crafts alkylations
using chiral Lewis acids, see: (a) Bandini, M.; Melloni, A.;
Umani-Ronchi, A. Angew. Chem. Int. Ed. 2004, 43, 550.
(b) Poulsen, T. B.; Jørgensen, K. A. Chem. Rev. 2008, 108,
2903.
(3) (a) Johannsen, M. Chem. Commun. 1999, 2233. (b) Saaby,
S.; Fang, X.; Gathergood, N.; Jørgensen, K. A. Angew.
Chem. Int. Ed. 2000, 39, 4114. (c) Saaby, S.; Bayón, P.;
Aburel, P. S.; Jørgensen, K. A. J. Org. Chem. 2002, 67,
4352. (d) Jia, Y.-X.; Xie, J.-H.; Duan, H.-F.; Wang, L.-X.;
Zhou, Q.-L. Org. Lett. 2006, 8, 1621.
(4) (a) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem.
Soc. 2004, 126, 11804. (b) Wang, Y.-Q.; Song, J.; Hong, R.;
Li, H.; Deng, L. J. Am. Chem. Soc. 2006, 128, 8156.
(c) Terada, M.; Yokoyama, S.; Sorimachi, K.; Uraguchi, D.
Adv. Synth. Catal. 2007, 349, 1863. (d) Kang, Q.; Zhao, Z.;
You, S. J. Am. Chem. Soc. 2007, 129, 1484. (e) Rowland,
G. B.; Rowland, E. B.; Liang, Y.; Perman, J. A.; Antilla,
J. C. Org. Lett. 2007, 9, 2609. (f) Zhang, G.-W.; Wang, L.;
Nie, J.; Ma, J.-A. Adv. Synth. Catal. 2008, 350, 1457.
(g) Kang, Q.; Zhao, Z.-A.; You, S.-L. Tetrahedron 2009, 65,
1603. For enantioselective aza-Friedel–Crafts reactions to
enecarbamates, see: (h) Terada, M.; Sorimachi, K. J. Am.
Chem. Soc. 2007, 129, 292. (i) Jia, Y.-X.; Zhong, J.; Zhu,
S.-F.; Zhang, C.-M.; Zhou, Q.-L. Angew. Chem. Int. Ed.
2007, 46, 5565. For asymmetric Pictet–Spengler
cyclization, see: (j) Taylor, M. S.; Jacobsen, E. N. J. Am.
Chem. Soc. 2004, 126, 10558. (k) Seayad, J.; Seayad, A. M.;
List, B. J. Am. Chem. Soc. 2006, 128, 1086. (l) Wanner, M.
J.; van der Hass, R. N. S.; de Cuba, K. R.; van Maarseveen,
J. H.; Hiemstra, H. Angew. Chem. Int. Ed. 2007, 46, 7485.
(5) Li, G.; Rowland, G. B.; Rowland, E. B.; Antilla, J. C. Org.
Lett. 2007, 9, 4065.
In conclusion, we have developed the asymmetric aza-
Friedel–Crafts alkylation of nonprotected pyrroles to im-
ines. We found that the heteroarylsulfonyl groups work
not only as a good activating group of the imino group, but
also as a stereocontroller by the dual activation for a chiral
binaphthol monophosphoric acids. Further extension of
work on heteroarylsulfonyl groups as powerful stereocon-
trollers in combination with chiral bifunctional organo-
catalysts is now in progress.
General Procedure for the Enantioselective aza-Friedel–Crafts
Reaction of Imines
To a solution of 1a (20 mg, 0.081 mmol) and 3b (7.0 mg, 0.008
mmol) in toluene (1.0 mL) was added pyrrole (7.3 mL, 0.106 mmol)
at r.t. The reaction mixture was stirred for 12 h then concentrated
under reduced pressure to give a crude product which was purified
by column chromatography (silica gel, hexane–EtOAc = 60:40) to
give 2a (17.8 mg, 70%, 88% ee). Single recrystallization of 2a (88%
ee) from hexane–EtOAc afforded 91% ee of 2a.
(6) Kang, Q.; Zheng, X.-J.; You, S.-L. Chem. Eur. J. 2008, 14,
Acknowledgment
3539.
(7) (a) Nakamura, S.; Sato, N.; Sugimoto, M.; Toru, T.
Tetrahedron: Asymmetry 2004, 15, 1513. (b) Sugimoto, H.;
Nakamura, S.; Hattori, M.; Ozeki, S.; Shibata, N.; Toru, T.
Tetrahedron Lett. 2005, 46, 8941. (c) Nakamura, S.;
Nakashima, H.; Sugimoto, H.; Shibata, N.; Toru, T.
Tetrahedron Lett. 2006, 47, 7599. (d) Nakamura, S.; Sano,
H.; Nakashima, H.; Kubo, K.; Shibata, N.; Toru, T.
Tetrahedron Lett. 2007, 48, 5565. (e) Nakamura, S.;
Nakashima, H.; Sugimoto, H.; Sano, H.; Hattori, M.;
Shibata, N.; Toru, T. Chem. Eur. J. 2008, 14, 2145.
(f) Esquivias, J.; Arrayás, R. G.; Carretero, J. C. J. Org.
This work was partly supported by a Grant-in-Aid for Young Scien-
tists B (20750074) from JSPS.
Synlett 2009, No. 10, 1639–1642 © Thieme Stuttgart · New York