10.1002/anie.202104319
Angewandte Chemie International Edition
RESEARCH ARTICLE
[4]
a) M. Akazome, T. Kondo, Y. Watanabe, J. Org. Chem. 1993, 58, 310-
312; b) M. Akazome, T. Kondo, Y. Watanabe, J. Org. Chem. 1994, 59,
3375-3380; c) S. Tollari, S. Cenini, C. Crotti, E. Gianella, J. Mol. Catal.
1994, 87, 203-214; d) B. C. Söderberg, J. A. Shriver, J. Org. Chem. 1997,
62, 5838-5845; e) F. Ragaini, P. Sportiello, S. Cenini, J. Organomet.
Chem. 1999, 577, 283-291; f) J. H. Smitrovich, I. W. Davies, Org. Lett.
2004, 6, 533-535; g) I. W. Davies, J. H. Smitrovich, R. Sidler, C. Qu, V.
Gresham, C. Bazaral, Tetrahedron 2005, 61, 6425-6437; h) F. Ragaini,
A. Rapetti, E. Visentin, M. Monzani, A. Caselli, S. Cenini, J. Org. Chem.
2006, 71, 3748-3753; i) F. Ragaini, F. Ventriglia, M. Hagar, S. Fantauzzi,
S. Cenini, Eur. J. Org. Chem. 2009, 2185-2189; j) K. Okuro, J. Gurnham,
H. Alper, J. Org. Chem. 2011, 76, 4715-4720; k) K. Okuro, J. Gurnham,
H. Alper, Tetrahedron Lett. 2012, 53, 620-622; l) N. Jana, F. Zhou, T. G.
Driver, J. Am. Chem. Soc. 2015, 137, 6738-6741; m) N. H. Ansari, C. A.
Dacko, N. G. Akhmedov, B. C. G. Söderberg, J. Org. Chem. 2016, 81,
9337-9349; n) F. Zhou, D.-S. Wang, X. Guan, T. G. Driver, Angew.
Chem. Int. Ed. 2017, 56, 4530-4534; o) R. L. Ford, I. Alt, N. Jana, T. G.
Driver, Org. Lett. 2019, 21, 8827-8831.
f) B. Narendraprasad Reddy, C. V. Ramana, Chem. Commun. 2013, 49,
9767-9769; g) C. V. Suneel Kumar, C. V. Ramana, Org. Lett. 2014, 16,
4766-4769; h) R.-R. Liu, S.-C. Ye, C.-J. Lu, G.-L. Zhuang, J.-R. Gao, Y.-
X. Jia, Angew. Chem. Int. Ed. 2015, 54, 11205-11208; i) E. J. M. Maduli,
S. J. Edeson, S. Swanson, P. A. Procopiou, J. P. A. Harrity, Org. Lett.
2015, 17, 390-392; j) N. Marien, B. Brigou, B. Pinter, F. De Proft, G.
Verniest, Org. Lett. 2015, 17, 270-273; k) N. Marien, T. Luo, G. Verniest,
Synlett 2017, 28, 934-938; l) W. Fu, Q. Song, Org. Lett. 2018, 20, 393-
396; m) N. Marien, B. N. Reddy, F. De Vleeschouwer, S. Goderis, K.
Van Hecke, G. Verniest, Angew. Chem. Int. Ed. 2018, 57, 5660-5664.
N. A. Bumagin, V. V. Bykov, L. I. Sukhomlinova, T. P. Tolstaya, I. P.
Beletskaya, J. Organomet. Chem. 1995, 486, 259-262.
[14]
[15]
For a discussion of the stability and potential decomposition products of
N-hydroxyindoles, see: a) M. Somei, Heterocycles 1999, 50, 1157-1211;
b) A. Penoni, G. Palmisano, G. Broggini, A. Kadowaki, K. M. Nicholas,
J. Org. Chem. 2006, 71, 823-825.
[16]
Exposure of nitrostilbene 2r to KOt-Bu produced multiple decomposition
products with only trace oxindole 6r observed.
[5]
a) R. S. Srivastava, K. M. Nicholas, Chem. Commun. 1998, 2705-2706;
b) R. S. Srivastava, K. M. Nicholas, Organometallics 2005, 24, 1563-
1568; c) J. Gui, C.-M. Pan, Y. Jin, T. Qin, J. C. Lo, B. J. Lee, S. H.
Spergel, M. E. Mertzman, W. J. Pitts, T. E. La Cruz, M. A. Schmidt, N.
Darvatkar, S. R. Natarajan, P. S. Baran, Science 2015, 348, 886-891; d)
C. W. Cheung, M. L. Ploeger, X. Hu, Nat. Commun. 2017, 8, 14878; e)
M. Shevlin, X. Guan, T. G. Driver, ACS Catal. 2017, 5518-5522; f) C. W.
Cheung, M. L. Ploeger, X. Hu, ACS Catal. 2017, 7, 7092-7096; g) M.
Rauser, C. Ascheberg, M. Niggemann, Angew. Chem. Int. Ed. 2017, 56,
11570-11574.
[17]
[18]
H. Yi, A. Jutand, A. Lei, Chem. Commun. 2015, 51, 545-548.
a) P. Du, J. L. Brosmer, D. G. Peters, Org. Lett. 2011, 13, 4072-4075; b)
G. A. Russell, E. G. Janzen, J. Am. Chem. Soc. 1962, 84, 4153-4154.
R. J. Enemærke, T. B. Christensen, H. Jensen, K. Daasbjerg, J. Chem.
Soc., Perkin Trans 2 2001, 1620-1630.
[19]
[20]
The observed correlation times are in line with other organic radical
systems of this approximate size, modeled with similar spin dynamics.
For example, see: a) A. V. Bogdanov, B. Y. Mladenova Kattnig, A. K.
Vorobiev, G. Grampp, A. I. Kokorin, J. Phys. Chem. B 2020, 124, 11007-
11014; b) M. Poncelet, B. Driesschaert, Angew. Chem. Int. Ed. 2020, 59,
16451-16454; Angew. Chem. 2020, 132, 16593-16593.
[6]
[7]
a) T. V. Nykaza, A. Ramirez, T. S. Harrison, M. R. Luzung, A. T.
Radosevich, J. Am. Chem. Soc. 2018, 140, 3103-3113; b) T. V. Nykaza,
J. C. Cooper, G. Li, N. Mahieu, A. Ramirez, M. R. Luzung, A. T.
Radosevich, J. Am. Chem. Soc. 2018, 140, 15200-15205.
[21]
[22]
For a discussion of the EPR spectra potassium derivatives of
nitrostilbenes, see: Z. V. Todres, J. Organomet. Chem. 1992, 441, 349-
354.
a) N. Zinin, J. Prakt. Chem. 1845, 36, 93-107; b) H. Klinger, Ber. Dtsch.
Chem. Ges. 1882, 15, 865-867; c) H. S. Fry, J. L. Cameron, J. Am. Chem.
Soc. 1927, 49, 864-873.
While both Na+ and K+ possess high natural abundance of nuclear spin,
simulations including these hyperfine interactions did not produce a
better fit to the data. Refer to the Supporting Information for more details.
L. Huang, L. Massa, J. Karle, Proc. Nat. Acad. Sci. U.S.A. 2008, 105,
13720.
[8]
[9]
Y. Ogata, J. Mibae, J. Org. Chem. 1962, 27, 2048-2052.
[23]
[24]
a) C.-L. Sun, H. Li, D.-G. Yu, M. Yu, X. Zhou, X.-Y. Lu, K. Huang, S.-F.
Zheng, B.-J. Li, Z.-J. Shi, Nat. Chem. 2010, 2, 1044; b) E. Shirakawa,
K.-i. Itoh, T. Higashino, T. Hayashi, J. Am. Chem. Soc. 2010, 132,
15537-15539; c) W.-W. Chang, Z.-J. Li, W.-W. Yang, X. Gao, Org. Lett.
2012, 14, 2386-2389; d) S. Zhou, G. M. Anderson, B. Mondal, E. Doni,
V. Ironmonger, M. Kranz, T. Tuttle, J. A. Murphy, Chem. Sci. 2014, 5,
476-482; e) A. A. Toutov, W.-B. Liu, K. N. Betz, A. Fedorov, B. M. Stoltz,
R. H. Grubbs, Nature 2015, 518, 80-84; f) J. P. Barham, G. Coulthard,
R. G. Kane, N. Delgado, M. P. John, J. A. Murphy, Angew. Chem. Int.
Ed. 2016, 55, 4492-4496; g) J. P. Barham, G. Coulthard, K. J. Emery, E.
Doni, F. Cumine, G. Nocera, M. P. John, L. E. A. Berlouis, T. McGuire,
T. Tuttle, J. A. Murphy, J. Am. Chem. Soc. 2016, 138, 7402-7410; h) A.
J. Smith, A. Young, S. Rohrbach, E. F. O'Connor, M. Allison, H.-S. Wang,
D. L. Poole, T. Tuttle, J. A. Murphy, Angew. Chem. Int. Ed. 2017, 56,
13747-13751; i) D. I. Bugaenko, A. A. Dubrovina, M. A. Yurovskaya, A.
V. Karchava, Org. Lett. 2018, 20, 7358-7362; j) F. Cumine, F. Palumbo,
J. A. Murphy, Tetrahedron 2018, 74, 5539-5545; k) L. Wu, V. T. Annibale,
H. Jiao, A. Brookfield, D. Collison, I. Manners, Nat. Commun. 2019, 10,
2786; l) Y. Xu, X. Shi, L. Wu, RCS Adv. 2019, 9, 24025-24029.
For reports on the light-dependency of electron transfer from tert-
butoxide, see: a) Z. Xu, L. Gao, L. Wang, M. Gong, W. Wang, R. Yuan,
ACS Catal. 2015, 5, 45-50; b) G. Nocera, A. Young, F. Palumbo, K. J.
Emery, G. Coulthard, T. McGuire, T. Tuttle, J. A. Murphy, J. Am. Chem.
Soc. 2018, 140, 9751-9757.
Analysis of the reaction mixture after 20 h using EPR spectroscopy that
radical species were still present. We were not able to identify their
structures using simulation, and investigations are on-going to their role
in the reaction.
[25]
[26]
Oxindole formation was accompanied by azoxy by-product.
The effect of the addition of 15-crown-5 to NaOt-Bu-mediated reduction
of 4-nitrostilbene was also investigated using EPR spectroscopy.
Simulations were not able to definitively assign a structure to the radical
or radicals responsible for the signals. However, we did notice significant
changes in the EPR spectral shape, which is likely attributable to
interaction with the crown ether. For more details, refer to the Supporting
Information.
[27]
For related studies of alkoxide-mediated nitrosoarene reduction, see: a)
P. Buck, Angew. Chem., Int. Ed. Engl. 1969, 8, 120-131; b) I. R.
Bellobono, A. Gamba, G. Sala, M. Tampieri, J. Am. Chem. Soc. 1972,
94, 5781-5786; c) M. Prato, U. Quintily, G. Scorrano, J. Chem. Soc.,
Perkin Trans 2 1986, 1419-1424.
[28]
[29]
For a theoretical discussion of 5-center versus 6-center cyclization of
nitrosostryrenes, see: a) I. W. Davies, V. A. Guner, K. N. Houk, Org. Lett.
2004, 6, 743-746; b) A. G. Leach, K. N. Houk, I. W. Davies, Synthesis
2005, 3463-3467.
[10]
Control experiments established that tert-butoxide did not convert N-
hydroxyindole to oxindole. For reports of acid-mediated isomerization,
see: a) M. Somei, K. Noguchi, R. Yamagami, Y. Kawada, K. Yamada, F.
Yamada, Heterocycles 2000, 53, 7-10; b) M. Somei, K. Noguchi, F.
Yamada, Hetercycles 2001, 55, 1237-1240.
[11]
[12]
Refer to the Supporting Information for more details.
The crystal structure of 6a was deposited in the Cambridge
Crystallographic Database (CCDC 1980039).
[13]
a) N. Asao, K. Sato, Y. Yamamoto, Tetrahedron Lett. 2003, 44, 5675-
5677; b) B. C. G. Söderberg, S. P. Gorugantula, C. R. Howerton, J. L.
Petersen, S. W. Dantale, Tetrahedron 2009, 65, 7357-7363; c) P. Patel,
C. V. Ramana, Org. Biomol. Chem. 2011, 9, 7327-7334; d) C. V. S.
Kumar, V. G. Puranik, C. V. Ramana, Chem. Eur. J. 2012, 18, 9601-
9611; e) P. Patel, C. V. Ramana, J. Org. Chem. 2012, 77, 10509-10515;
[30]
The reaction of the oxygen of the nitro group with an olefin has
precedence in the [2,3] sigmatropic rearrangement of allylic nitro
compounds to allylic alcohols, which occurs via a nitrite intermediate. For
leading references, see: a) J. Boivin, L. El Kaim, J. Kervagoret, S. Z.
Zard, J. Chem. Soc., Chem. Commun. 1989, 1006-1008; b) E. Dumez,
J. Rodriguez, J.-P. Dulcère, Chem. Commun. 1999, 2009-2010; c) C.
6
This article is protected by copyright. All rights reserved.