Mothe and Chan
SCHEME 1. Regioselective TfOH-Catalyzed Synthesis of
Conjugated Enyne from 1-Cyclopropyl-2-propyn-1-ols
JOCArticle
variety of organic transformations in excellent yields and
with high selectivity.5 In recent years, this has hitherto
included stereoselective Brønsted acid mediated C-X
(X=C, N, O, S) bond formation strategies that make use
of alcohol pro-electrophiles such as allylic, benzylic, and
propargylic alcohols.6 To our knowledge, however, an
efficient Brønsted acid catalyzed protocol for the regioselec-
tive synthesis of conjugated enynes from 1-cyclopropyl-2-
propyn-1-ols has not been extensively explored.7 As part of a
program examining the utility of alcohols as pro-electro-
philes in organic synthesis,3,8 we report herein TfOH-cata-
lyzed ring opening of 1-cyclopropyl-2-propyn-1-ols with
alcohols (Scheme 1).9 The conjugated enyne products were
afforded in excellent yields, high product turnovers, and
regioselectivities comparable to those reported for the clo-
sely related metal-promoted approaches to this synthetically
useful building block.
TABLE 1. Optimization of Reaction Conditionsa
Results and Discussion
All 1-cyclopropyl-2-propyn-1-ols studied in this work
were prepared from reaction of the corresponding cyclopro-
pyl ketone and substituted alkyne pretreated with LDA or
catalyst loading
(mol %)
product
yield (%) turnover
entry catalyst
solvent
1
TfOH
TfOH
TfOH
TfOH
TfOH
TfOH
TfOH
TfOH
TfOH
TfOH
Tf2NH
p-TsOH
TFA
5
5
1
100
81
20
16
100
(5) For recent reviews, see: (a) Akiyama, T. Chem. Rev. 2007, 107, 5744.
(b) Busca, G. Chem. Rev. 2007, 107, 5366. (c) Shao, L.-X.; Shi, M. Curr. Org.
Chem. 2007, 11, 1135. (d) Yamamoto, H. Tetrahedron 2007, 63, 8377.
(e) Yamamoto, H.; Boxer, M. B. Chimia 2007, 61, 279. (f) Ishihara, K.;
Yamamoto, H. In New Frontiers in Asymmetric Catalysis; Mikami, K.,
Lautens, M., Eds; John Wiley & Sons: New York, 2007; p 359. (g) Enders, D.;
Grondal, C.; Huettl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570.
(h) Yamamoto, H. In Asymmetric Synthesis; Christmann, M., Braese, S., Eds;
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; p 153.
(i) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999.
(6) For reviews on the use of alcohols as pro-electrophiles, see:
(a) Bandini, M.; Tragni, M. Org. Biomol. Chem. 2009, 7, 1501. (b) Muzart,
J. Tetrahedron 2008, 64, 5815. (c) Muzart, J. Eur. J. Org. Chem. 2007, 3077.
(d) Muzart, J. Tetrahedron 2005, 61, 4179. (e) Tamaru, Y. Eur. J. Org. Chem.
2005, 2647. For selected examples on Brønsted acid catalyzed reactions with
alcohol pro-electrophiles, see: (e) Bras, J. L.; Muzart, J. Tetrahedron 2007, 63,
2b
3
100
100
100
49
4
5
6
7
0.1
0.01
0.005
0.001
0.01
0.01
0.01
0.01
5
1 000
10 000
9 800
-
7 500
7 000
6 500
2 000
11
c
-
8d
9d
10d
11
12e
13f
14f
PhMe
(CH2Cl)2
THF
75
70
65
20
55
40
10
5
5
8
2
HCl
aAll reactions were performed at reflux for 15 min with 0.2 mmol of 1a
in 2 mL of 2a. bReaction conducted at room temperature for 24 h.
cNo reaction based on TLC and 1H NMR analysis of the crude mixture.
ꢀ
ꢀ
7942. (f) Sanz, R.; Martınez, A.; Guilarte, V.; Alvarez-Gutierrez, J. M.;
Rodrıguez, F. Eur. J. Org. Chem. 2007, 4642. (g) Sanz, R.; Miguel, D.;
ꢀ
ꢀ
Martınez, A.; Alvarez-Gutierrez, J. M.; Rodrıguez, F. Org. Lett. 2007, 9,
2027. (h) Sanz, R.; Martınez, A.; Miguel, D.; Alvarez-Gutierrez, J. M.;
ꢀ
ꢀ
dReaction conducted with 5 equiv of 2a. Reaction conducted for 24 h.
e
Rodrıguez, F. Org. Lett. 2007, 9, 727. (i) Shirakawa, S.; Kobayashi, S. Org.
fReaction conducted for 2 h.
ꢀ
ꢀ
Lett. 2007, 9, 311. (j) Sanz, R.; Martınez, A.; Miguel, D.; Alvarez-Gutierrez,
J. M.; Rodrıguez, F. Adv. Synth. Catal. 2006, 348, 1841. (k) Motokura, K.;
Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew. Chem.,
ethynylmagnesium bromide in place of the alkyne and LDA,
or alkynone with cyclopropylmagnesium bromide following
literature procedures.10 With 1-cyclopropyl-1,3-diphenyl-
prop-2-yn-1-ol 1a and EtOH 2a as the probe substrates,
a survey of different reaction conditions initially revealed
alkoxylation of 1a with a 2 mL stock solution of 2a containing
5 mol % of TfOH at reflux for 15 min gave the best result
(Table 1, entry 1). Under these conditions, (Z)-(6-ethoxyhex-
3-en-1-yne-1,3-diyl)dibenzene 3a was obtained as the sole
product in quantitative yield. The cis-stereochemistry of the
conjugated enyne product was confirmed by comparison with
X-ray crystallographic analysis and NOE spectroscopic data
of closely related adducts (vide infra) and reported literature
values.3,4 Our studies subsequently showed that a gradual
decrease in the catalyst loading of TfOH from 5 to 1 to 0.1 to
0.01 mol % was found to result in no apparent loss in catalytic
activity, and in each of these reactions the same product
yield was attained (entries 3-5). On the other hand, further
ꢀ
ꢀ
Int. Ed. 2006, 45, 2605. (l) Sanz, R.; Martınez, A.; Alvarez-Gutierrez, J. M.;
Rodrıguez, F. Eur. J. Org. Chem. 2006, 1383. (m) Young, J.-J.; Jung, L.-J.;
Cheng, K.-M. Tetrahedron Lett. 2000, 41, 3415.
(7) Liang and co-workers reported one example of p-TsOH-catalyzed
alkoxylation of a 1-cyclopropyl-2-propyn-1-ol with MeOH that gave the
corresponding conjugated enyne product in 58% yield; see ref 4b.
(8) (a) Zhang, X.; Rao, W.; Sally; Chan, P. W. H. Org. Biomol. Chem.
2009, DOI: 10.1039/B908447A. (b) Kothandaraman, P.; Rao, W.; Zhang, X.;
Chan, P. W. H. Tetrahedron 2009, 65, 1833. (c) Rao, W.; Chan, P. W. H. Org.
Biomol. Chem. 2008, 6, 2426. (d) Zhang, X.; Rao, W.; Chan, P. W. H. Synlett
2008, special issue, 2204. (e) Wu, W.; Rao, W.; Er, Y. Q.; Loh, K. J.; Poh, C. Y.;
Chan, P. W. H. Tetrahedron Lett. 2008, 49, 2620; Tetrahedron Lett. 2008, 49,
4981. (f) Rao, W.; Tay, A. H. L.; Goh, P. J.; Choy, J. M. L.; Ke, J. K.; Chan, P. W. H.
Tetrahedron Lett. 2008, 49, 122; Tetrahedron Lett. 2008, 49, 5112.
(9) For selected examples of other reactions mediated by TfOH, see:
(a) Juma, B.; Adeel, M.; Villinger, A.; Reinke, H.; Spannenberg, A.; Fischer,
C.; Langer, P. Adv. Synth. Catal. 2009, 351, 1073. (b) Singh, R.; Parai, M. K.;
Panda, G. Org. Biomol. Chem. 2009, 7, 1858. (c) Li, A.; DeSchepper, D. J.;
Klumpp, D. A. Tetrahedron Lett. 2009, 50, 1924. (d) Zhu, Z.-B.; Shi, M.
J. Org. Chem. 2009, 74, 2481. (e) Kalbarczyk, K. P.; Diver, S. T. J. Org.
Chem. 2009, 74, 2193. (f) Lu, J.-M.; Zhu, Z.-B.; Shi, M. Chem.;Eur. J. 2009,
15, 963. (g) Zhang, C.; Murarka, S.; Seidel, D. J. Org. Chem. 2009, 74, 419.
(h) Li, X.; Ye, S.; He, C.; Yu, Z.-X. Eur. J. Org. Chem. 2008, 4296. (i) Li, W.;
€ €
Shi, M. J. Org. Chem. 2008, 73, 4151. (j) Abid, M.; Teixeira, L.; Torok, B.
Org. Lett. 2008, 10, 933. (k) Rosenfeld, D. C.; Shekhar, S.; Takemiya, A.;
Utsunomiya, M.; Hartwig, J. F. Org. Lett. 2006, 8, 4179. (l) Li, Z.; Zhang, J.;
Brouwer, C.; Yang, C.-G.; Reich, N. W.; He, C. Org. Lett. 2006, 8, 4175.
~
(m) Coulombel, L.; Dunach, E. Green Chem. 2004, 6, 499. (n) Schlummer, B.;
Hartwig, J. F. Org. Lett. 2002, 4, 1471.
(10) Please refer to Supporting Information, refs 3 and 4, and see:
(a) Enholm, E. J.; Jia, Z. J. J. Org. Chem. 1997, 62, 9159. (b) Toda, F.; Imai,
N. J. Chem. Soc. Perkin Trans. 1 1994, 2673.
5888 J. Org. Chem. Vol. 74, No. 16, 2009