pubs.acs.org/joc
activated or unactivated electrophilic partner4 with a nucleo-
Mild Room-Temperature Palladium-Catalyzed
C3-Arylation of 2(1H)-Pyrazinones via a Desulfitative
Kumada-Type Cross-Coupling Reaction†
philic organometallic donor. The use of organo-sulfur
compounds as the electrophilic reaction partner has also
been described.5 Inspired by recent developments in the field
of desulfitative6a-c C-C cross-coupling methodologies
using organometallic donors like organoborons,6d organos-
tannanes,6e and organozinc6f and as a result of our recent
investigations on the desulfitative Hiyama-type cross-cou-
pling,6g we were keen to explore the use of Grignard reagents
(GR) as organometallic partners7 for the desulfitative C-C
bond formation. GR are economical and easy to synthe-
size,7d and many of them are commercially available. The
coupling of an aryl GR with an aryl halide is one of the most
powerful and versatile approaches for the construction of a
variety of biaryls, terphenyls, and oligoaryls, which are
important building blocks for the synthesis of natural pro-
ducts and bioactive compounds.8 A number of nickel and
palladium complexes have been reported to catalyze the
coupling of GR with aryl bromides and iodides.9 In a recent
report by Vogel and co-worker10 the use of iron catalysts
for the desulfitative C-C cross-coupling reaction applying
sulfonyl chlorides and GR was described. Other substrates,
including vinyl sulfides, have also been reported to under-
go cross-coupling. Early reports by Wenkert11 and Takei12
independently revealed that alkenyl and allyl sulfides
could undergo Ni-catalyzed Kumada type cross-coupling.13
Vaibhav P. Mehta, Sachin G. Modha, and
Erik Van der Eycken*
Laboratory for Organic & Microwave-Assisted Chemistry
(LOMAC), Department of Chemistry, University of Leuven,
Celestijnenlaan 200F, B-3001 Leuven, Belgium
Received June 22, 2009
An efficient desulfitative Kumada-type cross-coupling
protocol is reported for the C3-arylation of 5-chloro-
3-(phenylsulfanyl)pyrazin-2(1H)-ones. The method has
also been successfully extended to the arylation of some
(hetero)aryl thioethers and thioesters.
(4) (a) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 6694.
(b) Strotman, N. A.; Sommer, S.; Fu, G. C. Angew. Chem., Int. Ed. 2007,
46, 3556. (c) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 9602. (d) For a
short review on non-activated alkyl halides, see: Frisch, A. C.; Beller, M. Angew.
Chem. Int. Ed. 2005, 44, 674.
(5) (a) Dubbaka, S. R.; Vogel, P. Angew. Chem. 2005, 117, 7848; (b) Angew.
Chem., Int. Ed. 2005, 44, 7674.
The use of a transition-metal catalyst for C-C1 and C-
heteroatom2 cross-coupling reactions has revolutionized
the art and practice of organic synthesis in the last couple
of decades.1 The generally mild reaction conditions, high
functional group tolerance, and broad availability of the
reagents have contributed to the success of these bond-
forming reactions. Although in most of these protocols a
Pd(0) catalyst3a,b is used, other transition metals such as
Cu(I),3c Ni(0),3d Co(II),3e and Fe(II or III)3f-i have also been
investigated. These procedures involve the coupling of an
(6) (a) Prokopkova, H.; Kappe, C. O. Angew. Chem., Int. Ed. 2009, 48, 2276
and references cited therein. (b) Liebeskind, L. S.; Sorgl, J. J. Am. Chem. Soc.
2000, 122, 11260. (c) Prokopkova, H.; Kappe, C. O. J. Org. Chem. 2007, 72,
4440. (d) Miyura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (e) Stille, J. K.
Angew. Chem. 1986, 98, 504; (i) Angew. Chem., Int. Ed. 1986, 25, 508.
(f) Negshi, E.-i. Acc. Chem. Res. 1982, 15, 340. (g) Mehta, V. P.; Sharma, A.;
Van der Eycken, E. Adv. Synth. Catal. 2008, 350, 2174.
(7) (a) Cahiez, G.; Foulgoc, L.; Moyeux, A. Angew. Chem., Int. Ed. 2009,
48, 2969. (b) Cahiez, G.; Chaboche, C.; Duplais, C.; Moyeux, A. Org. Lett.
2009, 11, 277. (c) Cahiez, G.; Moyeux, A.; Buendia, J.; Duplais, C. J. Am.
Chem. Soc. 2007, 129, 13788. (d) Knochel, P.; Krasovskiy, A.; Sapountzis, I. In
Handbook of Functionalized Organometallics; Knochel, P., Ed.; Wiley-VCH:
Weinheim, 2005; Vol. 1, pp 109.
(8) (a) Takahashi, T.; Kanno, K. I. In Modern Organonickel Chemistry;
Tamaru, Y., Ed.; Wiley-VCH: Weinheim, 2005. (b) Tamao, K.; Sumitani, K.;
Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374. (c) Tamao, K.; Kiso, Y.;
Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 9268.
(9) (a) Lau, S. Y. W.; Hughes, G.; O’Shea, P. D.; Davies, I. W. Org. Lett.
2007, 9, 2239. (b) Roques, N.; Saint-Jalmes, L. Tetrahedron Lett. 2006, 47,
3375. (c) Wolf, J.; Labande, A.; Daran, J.-C.; Poli, R. J. Organomet. Chem.
2006, 691, 433. (d) Liang, L.-C.; Chien, P.-C.; Lin, J.-M.; Huang, M.-H.;
Huang, Y.-L; Liao, J.-H. Organometallics 2006, 25, 1399–1411. (e) Horibe,
H.; Fukuda, Y.; Kondo, K.; Okuno, H.; Murakami, Y.; Aoyama, T.
Tetrahedron 2004, 60, 10701. (f) Yang, L.-M.; Huang, L.-F.; Luh, T.-Y.
Org. Lett. 2004, 6, 1461.
(10) Volla, C. M. R.; Vogel, P. Angew. Chem., Int. Ed. 2008, 47, 1305.
(11) (a) Wenkert, E.; Shepard, M. E.; Mcphail, A. T. J. Chem. Soc., Chem.
Commun. 1986, 1390. (b) Wenkert, E.; Fernandes, J. B.; Michelotti, E. L.;
Swindell, C. S. Synthesis 1983, 701. (c) Wenkert, E.; Ferreira, T. W.;
Michelotti, E. L. J. Chem. Soc., Chem. Commun. 1979, 637.
(12) (a) Okamura, H.; Miura, M.; Takei, H. Tetrahedron Lett. 1979, 1, 43.
(b) Okamura, H.; Takei, H. Tetrahedron Lett. 1979, 36, 3425.
(13) (a) Kumada, M. Pure Appl. Chem. 1980, 52, 669. (b) Walla, P.;
Kappe, C. O. Chem. Commun. 2004, 564. (c) Xi, Z.; Liu, B.; Chen, W. J. Org.
Chem. 2008, 73, 3954.
† Dedicated to Academician Prof. Dr. Oleg. N. Chupakin on the occasion of his
75th birthday.
(1) (a) Transition Metals for Organic Synthesis, 2nd ed.; Bellar, M., Bolm,
C., Eds.; Wiley-VCH: Weinheim, 2004. (b) Metal-Catalyzed Cross-Coupling
Reactions, 2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim,
2004; Vols. 1 and 2. (c) Beller, M.; Zapf, A. In Handbook of Organopalladium
Chemistry for Organic Synthesis; Negishi, E.-I., de Meijere, A., Eds.; Wiley:
New York, 2002; Vol. 1.
(2) (a) Ley, S. V.; Thomas, A. W. Angew. Chem. 2003, 115, 5558;
(b) Angew. Chem., Int. Ed. 2003, 42, 5400.
(3) (a) Tsuji, J. In Palladium Reagents and Catalysts: Innovations in
Organic Synthesis; Wiley: Chichester, 1995. (b) Tsuji, J. In Palladium in Organic
Synthesis: Topics in Orgnaometallic Chemistry; Springer: New York, 2005.
(c) Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 135. (d) Corriu, J. P.;
Masse, J. P. J. Chem. Soc., Chem. Commun. 1972, 144. (e) Duplais, C.; Bures, F.;
Sapountzis, I.; Korn, T. J.; Cahiez, G.; Knochel, P. Angew. Chem. 2004, 116,
3028; (j) Angew. Chem., Int. Ed. 2004, 43, 2968. (f) F€urstner, A.; Leitner, A.
Angew. Chem., Int. Ed. 2002, 41, 609 and ref erences cited therein. (g) Bolm, C.;
Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217. (h) Taillefer, M.; Xia,
N.; Ouali, A. Angew. Chem., Int. Ed., 2007, 47, 934 and references cited therein.
(i) Sherry, B. D.; Furstner, A. Acc. Chem. Res. 2008, 41, 1500.
6870 J. Org. Chem. 2009, 74, 6870–6873
Published on Web 08/03/2009
DOI: 10.1021/jo901327y
r
2009 American Chemical Society