ORGANIC
LETTERS
2007
Vol. 9, No. 24
5103-5106
Facile Synthesis of Oligonucleotide
Phosphoroselenoates
Kha Tram, Xiaolu Wang, and Hongbin Yan*
Department of Chemistry, Brock UniVersity, St. Catharines, ON, L2S 3A1, Canada
Received September 22, 2007
ABSTRACT
Se-(2-Cyanoethyl)phthalimide was synthesized from di-(2-cyanoethyl) diselenide. This reagent was found to be an efficient selenium transfer
reagent in the synthesis of selenophosphates. Thus, nucleotide H-phosphonate diesters that are formed in situ through the H-phosphonate
chemistry undergo quantitative reaction with Se-(2-cyanoethyl)phthalamide. The resulting Se-(2-cyanoethyl) oligonucleotide phosphoroselenoate
triesters are subsequently deprotected to give oligonucleotide phosphoroselenoate diesters in excellent yields.
Selenium derivatization has proved to be a useful approach
in solving the phase problem in X-ray crystallography.1 One
approach of selenium derivatization is to replace a nonbridg-
ing oxygen atom of the internucleotide linkages with
selenium.1e,g,i In the chemical synthesis of oligonucleotide
selenophosphate diesters, a general approach involves the
oxidative transfer of selenium to P(III) centers, such as
phosphite triesters2 and H-phosphonate diesters.3 However,
these transformations are usually not efficient due to the
relatively low reactivity of selenium toward P(III).
A few years ago, Reese and co-workers4 demonstrated the
synthesis of sulfur-transfer reagents and their application in
oligonucleotide synthesis using the modified H-phosphonate
approach.5 Their approach has been successfully used in
oligonucleotide synthesis, both of natural phosphates and
phosphorothioates.6 We therefore embarked on the investiga-
tion of a selenium transfer reagent that is efficient for the
synthesis of oligonucleotide phosphoroselenoates via the
modified H-phosphonate approach.
(1) (a) Sheng, J.; Jiang, J.; Salon, J.; Huang, Z. Org. Lett. 2007, 9, 749.
(b) Carrasco, N.; Ginsburg, D.; Du, Q.; Huang, Z. Nucleosides Nucleotides
Nucleic Acids 2001, 20, 1723. (c) Du, Q.; Carrasco, N.; Teplova, M.; Wilds,
C. J.; Egli, M.; Huang, Z. J. Am. Chem. Soc. 2002, 124, 24. (d) Teplova,
M.; Wilds, C. J.; Wawrzak, Z.; Tereshko, V.; Du, Q.; Carrasco, N.; Huang,
Z.; Egli, M. Biochimie 2002, 84, 849. (e) Wilds, C. J.; Pattanayek, R.; Pan,
C.; Wawrzak, Z.; Egli, M. J. Am. Chem. Soc. 2002, 124, 14910. (f) Buzin,
Y.; Carrasco, N.; Huang, Z. Org. Lett. 2004, 6, 1099. (g) Carrasco, N.;
Huang, Z. J. Am. Chem. Soc. 2004, 126, 448. (h) Carrasco, N.; Buzin, Y.;
Tyson, E.; Halpert, E.; Huang, Z. Nucleic Acids Res. 2004, 32, 1638. (i)
Carrasco, N.; Williams, J. C.; Brandt, G.; Wang, S.; Huang, Z. Angew.
Chem., Int. Ed. 2006, 45, 94.
(2) (a) Bollmark, M.; Stawinski, J. Chem. Commun. 2001, 771. (b)
Koziolkiewicz, M.; Uznanski, B.; Stec, W. J.; Zon, G. Chem. Scr. 1986,
26, 251. (c) Mori, K.; Boiziau, C.; Cazenave, C.; Matsukura, M.; Subasinghe,
C.; Cohen, J. S.; Border, S.; Toulme, J. J.; Stein, C. A. Nucleic Acids Res.
1989, 17, 8207. (d) Stec, w. J.; Zon, G.; Egan, W.; Stec, B. J. Am. Chem.
Soc. 1984, 106, 6077. (e) Baraniak, J.; Korczynski, D.; Kaczmarek, R.;
Stec, W. J. Nucleosides Nucleotides 1999, 18, 2147.
We first tested the reaction between Se-(2-cyanoethyl)-
diselenide 1, which is readily prepared using the literature
procedure,7 with diethylphosphite in pyridine (Scheme 1).
Consumption of diethylphosphite was followed by 31P NMR.
After the solution was stirred overnight at room temperature,
(3) (a) Lindh, I.; Stawinski, J. J. Org. Chem. 1989, 54, 1338. (b)
Stawinski, J.; Thelin, M. J. Org. Chem. 1994, 59, 130.
(4) Klose, J.; Reese, C. B.; Song, Q. L. Tetrahedron 1997, 53, 14411.
(5) Reese, C. B.; Song, Q. L. Bioorg., Med. Chem. Lett. 1997, 7, 2787.
(6) (a) Reese, C. B.; Song, Q. L. J. Chem. Soc., Perkin Trans. 1 1999,
1477. (b) Reese, C. B.; Yan, H. J. Chem. Soc., Perkin Trans. 1 2002, 2619.
(7) Logon, G.; Igunbor, C.; Chen, G.; Davis, H.; Simon, A.; Salon, J.;
Huang, Z. Synlett 2006, 1554.
10.1021/ol702305v CCC: $37.00
© 2007 American Chemical Society
Published on Web 11/01/2007