4
Tetrahedron
Similar to pyrrole couplings, indazole also afforded good to
Acknowledgments
high yields, ranging between 68 and 89% yields, in coupling with
various aryl halides, including electron rich, poor, and ortho-
substituted iodides, bromides, and chlorides as shown in Table 5.
Ortho-substitution results in only 10-12% loss in yields compared
to couplings with para-substituted substrates.
The authors greatly acknowledge SUNY at Oswego for
providing a Student Scholarly Creativity and Activity Grant for
supporting undergraduate student Erik Vik and graduate student
Abdulkhaliq Alawaed, and Dr. Mike Knopp, Mr. Fred Scoles,
and Mrs Kristin Gublo for their support service, feedback, and
time.
Indoles are an important class of heterocycles not only
because they are among the most ubiquitous compounds in
nature, by being incorporated into the amino acid tryptophan and
hormones serotonin and melatonin, but also because they have a
wide range of biological activities, including antihypertensive,
antiviral, analgesic, antitumor, anti-inflammatory, antimicrobial,
and antifungal.21 Hence, it is not surprising that creating new
compounds with indole as the building block is highly important.
When indole was used as a nitrogen containing heterocycle in our
reaction, indole derivatives were successfully obtained in good to
high yields by using a range of aryl halides as shown in Table 6.
Following the previous trends of pyrazole, pyrrole, and indazole,
indoles also worked well with various aryl halides using
Cu2O/L5 as catalysts system, since the nature of the aryl halide
(electron poor vs rich) appeared to have a negligible effect on the
outcome of the results. This makes the indoles useful in general
substrate class. These results suggested that, five membered ring
N-heterocycles such as pyrazole and pyrrole can be efficiently
coupled to aryl halides derivatives with higher yields than those
of indazole and indole substrates, It can be concluded that, due to
steric interactions arising from the peri-like 7-proton of both
indazole and indole.9d
Supplementary Data
Supplementary material associated with this article can be
found, in the online version, at
References and notes
1. (a) Ullmann, F.; Sponagel, P. Ber. Dtsch. Chem. Ges. 1905, 38, 2211 –
2212. (b) Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691–1692.
2. For reviews on Ullmann coupling, see: a) Hassan, J.; Svignon, M.; Gozzi
C.; Schulz, E.; Lemaire, M. Chem Rev. 2002, 102, 1359–1469. b) Evano,
G.; Blanchard, N.; Toumi, M. Chem. Rev., 2008, 108, 3054–3131. (c)
Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954–6971.
(d) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400–
5449. (e) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de
Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004. (f)
Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428–2439. (g)
Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337–
2364. (h) D. Ma, Q. Cai, Acc. Chem. Res. 2008, 41, 1450– 1460.
3. (a) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096–
3099. (b) Reis, L.A.; Ligiéro, C. B. P.; Andrade, A. A.; Taylor, J. G.;
Miranda, P. C. M. L. Materials 2012, 5, 2176–2189. (c) De Hoz, A.;
Diaz-Ortiz, A.; Elguero, J.; Martinez, L. J.; Moreno, A.; Sanchez-
Migallon, A. Tetrahedron, 2001, 57, 4397–4403. (d) Musolino, B.;
Quinn, M.; Hall, K.; Coltuclu, V.; Kabalka, G.W. Tetrahedron Lett.
2013, 54, 4080–4082.
Table 6. Survey of different substrates and halides with indole.
4. For recent reviews palladium catalyzed C-N bond formation, see: (a)
Buchwald, S. L.; Mauger, C.; Mignani, G.; Scholz, U. Adv. Synth. Catal.
2006, 348, 23–39; (b) Kienle, M.; Dubbaka, S. R.; Brade, K.; Knochel, P.
Eur. J. Org. Chem. 2007, 4166–4176; (c) Hartwig, J. F. Acc. Chem. Res.
2008, 41, 1534–1544; (d) Surry, D. S.; Buchwald, S. L. Angew. Chem.,
Int. Ed. 2008, 47, 6338–6361.
5. (a) J.-F. Marcoux, S. Doye, S. L. Buchwald, J. Am. Chem. Soc. 1997,
119, 10539 –10540. (b) A. Kiyomori, J.- J.-F. Marcoux, S. L. Buchwald,
Tetrahedron Lett. 1999, 40, 2657 –2660.
6. K. C. Nicolaou, C. N. C. Boddy, S. Natarajan, T. Y. Yue, H. Li, S. Brase,
J. M. Ramanjulu, J. Am. Chem. Soc. 1997, 119, 3421–3422.
7. S. Zhang, D. Zhang, L. S. Liebeskind, J. Org. Chem. 1997, 62, 2312–
2313.
8. D. Ma, Y. Zhang, J. Yao, S. Wu, F. Tao, J. Am. Chem. Soc. 1998, 120,
12459–12467.
Entry
R
X
I
Product
25
Yield(%)a
1
2
3
4
5
6
H
95
89
84
81
80
72
4-NO2
4-NO2
4-NO2
4-Me
4-OMe
I
26
Br
Cl
I
26
26
27
I
28
9. For other copper catalyzed N-arylations, see: (a) Rizwan, K.; Karakaya,
I.; Heitz, D.; Zubair, M.; Rasool, N.; Molander, G. A. Tetrahedron Lett.,
2015, 56, 6839–6842. (b) Talukdar, D.; Das, G.; Thakur, S.; Karak, N.;
Thakur, A. J. Catal. Commun. 2015, 59, 238–243. (c) Zhang, C.; Zhan,
Z.; Lei, M.; Hu, L. Tetrahedron, 2014, 70, 8817–8821. (d) Farahat, A.
A.; Boykin, D.W.; Tetrahedron Lett., 2014, 55, 3049–3051. (e) Yang, Q.;
Wang, Y.; Yang, L.; Zhang, M. Tetrahedron, 2013, 69, 6230–6233. (f)
Liu, Y.; Liu, W.; Zhang, Q.; Liu, P.; Xie, J.-W.; Dai, B. J. Chem. Res.,
2013 37, 636–637. (g) Zhang, H.; Cai, Q.; Ma, D.; Zhang, H.; Cai, Q.;
Ma, D. J. Org. Chem. 2005, 70, 5164–5173. (h) Rampazzi, V.; Massard,
A.; Richard, P.; Picquet, M.; Le Gendre, P. ChemCatChem, 2012, 4,
1828–1835. (i) D. Zhu, R.; Wang, J.; Mao, L.; Xu, F.; Wu, B.; Wan, J.
Mol. Catal. A Chem., 2006, 256, 256–260. (j) Teo, Y.-C.; Yong, F.-F.;
Lim, G.S. Tetrahedron Lett., 2011, 52, 7171–7174. (k) Liu, Y.; Liu, Y.;
Ma, X.; Liu, P.; Xie, J.; Dai, B.; Chinese Chem. Lett., 2014, 25, 1–4. (l)
Singh, R.; Allam, B.K.; Raghuvanshi, D.S.; Singh, K.N. Tetrahedron,
2013, 69, 1038–1042. (m) Liu, Y.-H.; Chen, C.; Yang, L.-M.
Tetrahedron Lett. 2006, 47, 9275–9278. (n) Nandurkar, N.S.;
Bhanushali, M.J.; Bhor, M.D.; Bhanage, B.M.Tetrahedron Lett. 2007,
48, 6573–6576.
aIsolated yields
In summary, the use of N-phenyl-2-pyridincarboxamide-1-oxide
(L5) as a ligand with Cu2O in Ullmann type C-N bond
formations between aryl halides and N-heteroaryls in common
o
solvents, such as MeCN, DMF, and DMSO at 82-120 C has
been successfully illustrated. The ligand is effective when only
4% equiv is used relative to the substrate. The reaction provided
the corresponding products in coupling of electron-rich, electron
poor, and ortho-substituted aryl halides, including ortho aryl-
chlorides, in good to very good yields. N-Arylation is selectively
preferred at benzyl position when ortho-halide benzyl bromide is
reacted with one equivalent of pyrazole. However, di-N-arylation
is achieved in very high yields when 2.5 equiv. of pyrazole is
used, providing a stoichiometric control over the coupling
reaction.
10. Altman, R. A.; Kowal, E. D.; Buchwald, S. L. J. Org. Chem. 2007, 72,
6190–6199.
11. (a) Lu, Z.; Twieg, R. J.; Huang, S. D. Tetrahedron Lett. 2003, 44, 6289–
6291. (b) Lu, Z.; Twieg, R. J. Tetrahedron 2005, 61, 903–907.
Exploitation of the NPPA, NPPA-N-oxide, and their
derivatives in Ullmann type C–O bond formation has been
underway, which will be published in the near future.