Table 3 Desulfonylation of various alcohols 7b–g
2007, 1701; (b) D. Almasi, D. A. Alonso and C. Najera, Tetra-
hedron: Asymmetry, 2007, 18, 299; (c) M. Shimizu, I. Hachiya and
I. Mizota, Chem. Commun., 2009, 874.
3 See, for example: (a) S. Mayer and B. List, Angew. Chem., Int. Ed.,
2006, 45, 4193; (b) S. Brandau, A. Landa, J. Franzen, M. Marigo
and K. A. Jørgensen, Angew. Chem., Int. Ed., 2006, 45, 4305;
(c) P. T. Franke, B. Richter and K. A. Jørgensen, Chem.–Eur. J.,
2008, 14, 6317; (d) M. Rueping, E. Sugionoa and E. Merino,
Chem.–Eur. J., 2008, 14, 6329; (e) S. Cabrera, E. Reyes,
J. Aleman, A. Milelli, S. Kobbelgaard and K. A. Jørgensen,
J. Am. Chem. Soc., 2008, 130, 12031; (f) J. Wang, A. Ma and
D. Ma, Org. Lett., 2008, 10, 5425.
4 (a) G. Y. Ishmuratov, M. P. Yakovleva, R. Y. Kharisov and
G. A. Tolstikov, Russ. Chem. Rev., 1997, 66, 987; (b) K. Mori, Eur.
J. Org. Chem., 1998, 1479; (c) P. H. G. Zarbin, J. A. F. P. Villar
and A. G. Correa, J. Braz. Chem. Soc., 2007, 18, 1100.
Entry
R
Product
Yield (%)
1
2
3
4
5
6
Et (7b)
n-Pr (7c)
n-Bu (7d)
n-Pentyl (7e)
n-Hexyl (7f)
n-Nonyl (7g)
9b
9c
9d
9e
9f
51
40
92
75
87
96
9g
5 3-Methyl-alkanols are quite commonly used building blocks. See,
for example: (a) T.-Z. Wang, E. Pinard and L. A. Paquette, J. Am.
Chem. Soc., 1996, 118, 1309; (b) A. B. Smith III, S. A. Kozmin and
D. V. Paone, J. Am. Chem. Soc., 1999, 121, 7423; (c) D. L. Boger,
H. Keim, B. Oberhauser, E. P. Schreiner and C. A. Foster, J. Am.
Chem. Soc., 1999, 121, 6197; (d) D. R. Williams, A. L. Nold and
R. J. Mullins, J. Org. Chem., 2004, 69, 5374; (e) D. F. Taber and
synthesis of different pheromones,17 was obtained in 92%
yield. An intermediate of the sex attractant of the yellow
mealworm, 9e (R = n-pentyl),18 was obtained in 75% yield
(entry 4, Table 3). Alcohol 9f (R = n-hexyl), used as an
intermediate in the synthesis of the sex pheromones of the
western hemlock looper,19a of the red flour beetle19b and of
some marine lipids,19c was obtained in 87% yield (entry 5,
Table 3). Finally, 9g (R = n-nonyl), which has been used in the
synthesis of pheromones,20 could be obtained in an almost
quantitative yield (entry 6, Table 3). The present procedure for
preparing all of these compounds involves two steps from
commercially available materials, and therefore it is much
more simple and efficient than those methods so far reported,
usually requiring much longer synthetic sequences.
W. Tian, J. Org. Chem., 2008, 73, 7560.
A different but
complementary iminium-based methodology for the enantio-
selective construction of chiral 3-methyl-alkanols, based on the
hydride reduction of enals, have been also reported. See:
(f) J. W. Yang, M. T. Hechavarria-Fonseca, N. Vignola and
B. List, Angew. Chem., Int. Ed., 2005, 44, 108; (g) S. Ouellet,
J. B. Tuttle and D. W. C. MacMillan, J. Am. Chem. Soc., 2005,
127, 32.
6 The Chemistry of Fragrances, ed. D. Pybus and C. Sell, Royal
Society of Chemistry, Cambridge, 1999.
7 D. J. Lenardao, G. V. Botteselle, F. Azambuja, G. Perin and
R. G. Jacob, Tetrahedron, 2007, 63, 6671.
8 (a) B. Trost, Bull. Chem. Soc. Jpn., 1998, 61, 107;
(b) J. C. Carretero, R. Arrayas and J. Adrio, in Sulfones in
Asymmetric Catalysis, ed. T. Toru and C. Bolm, Wiley, 2008,
ch. 9, pp. 291.
9 (a) S. Mosse and A. Alexakis, Org. Lett., 2005, 7, 4361;
(b) S. Mosse, M. Laars, K. Kriis, T. Kanger and A. Alexakis,
Org. Lett., 2006, 8, 2559; (c) A. Quintard, C. Bournaud and
A. Alexakis, Chem.–Eur. J., 2008, 14, 7504.
10 (a) A. Landa, M. Maestro, C. Masdeu, A. Puente, S. Vera,
M. Oiarbide and C. Palomo, Chem.–Eur. J., 2009, 15, 1562;
(b) S. Mosse, A. Alexakis, J. Mareda, G. Bollot, G. Bernardinelli
and Y. Filinchuk, Chem.–Eur. J., 2009, 15, 3204; (c) Q. Zhu and
Y. Lu, Org. Lett., 2008, 10, 4803.
11 For a general review of the use of silyldiarylprolinol ethers as
catalysts see: A. Mielgo and C. Palomo, Chem.–Asian J., 2008, 3,
922.
In conclusion, we report here the first organocatalytic
additions of a bis(arylsulfonyl)methane, catalyzed by the
diarylprolinol ether 8c in the presence of LiOAc, to a wide-
range of a,b-unsaturated aldehydes. The reactions take place
with excellent yields and high enantioselectivities (up to 96% ee).
Further in situ reduction and elimination of the sulfonyl
groups provides an indirect method for the organocatalytic
b-methylation of a,b-unsaturated aldehydes. This sequence
allows the synthesis of highly important 3-methyl-1-alkanols
in high optical purity from commercially available reagents.
This work was made possible by the Spanish Government
(Grant BQU2006-04012). J. A. and V. M. thank the ‘‘Ministerio
de Ciencia e Innovacion’’ for a ‘‘Juan de la Cierva’’ contract and
a pre-doctoral fellowship, respectively.
12 pKa values were obtained from D. A. Evans’ pKa table
(http://www2.lsdiv.harvard.edu/labs/evans/pdf/evans_pKa_table.pdf).
13 The use of LiOAc in aminocatalysis has been previously reported.
See, for example: Y. Wang, P. Li, X. Liang, T. Y. Zhang and J. Ye,
Chem. Commun., 2008, 1232.
Notes and references
14 All of the reactions described here of a,b-unsaturated aldehydes 6
with bisulfones 5 using proline derivatives as the organocatalyst
were followed by NMR. The resulting sulfonyl aldehydes were
in situ-reduced to their respective alcohols since direct isolation of
the aldehydes was difficult.
1 For recent reviews on organocatalysis see, for example:
(a) P. I. Dalko and P. L. Moisan, Angew. Chem., Int. Ed., 2004,
43, 5138; (b) A. Berkessel and H. Groger, Asymmetric Organo-
catalysis: From Biomimetic Concepts to Applications in
Asymmetric
Synthesis,
Wiley-VCH,
Weinheim,
2004;
15 K. Mori and T. Sugai, Synthesis, 1982, 752.
(c) J. Seayed and B. List, Org. Biomol. Chem., 2005, 3, 719;
(d) Acc. Chem. Res., 2004, 37(8), special issue on organocatalysis;
(e) B. List and J.-W. Yang, Science, 2006, 313, 1584;
(f) M. J. Gaunt, C. C. C. Johansson, A. McNally and N. C. Vo,
Drug Discovery Today, 2007, 2, 8; (g) B. List, Chem. Commun.,
2006, 819; (h) Enantioselective Organocatalysis: Reactions and
Experimental Procedures, ed. P. I. Dalko, Wiley-VCH, Weinheim,
2007; (i) P. Melchiorre, M. Marigo, A. Carlone and G. Bartoli,
Angew. Chem., Int. Ed., 2008, 47, 6138.
16 S. Senda and K. Mori, Agric. Biol. Chem., 1983, 47, 795.
17 See, for example: B. V. Burger and W. G. B. Petersen, J. Chem.
Ecol., 2002, 28, 501.
18 T. Kitahara and S.-H. Kang, Proc. Jpn. Acad., Ser. B, 1994, 70,
181.
19 (a) J. Li, G. Gries, R. Gries, J. Bikic and K. N. Slessor, J. Chem.
Ecol., 1993, 19, 2547; (b) T. Suzuki, J. Ozaki and R. Sugawara,
Agric. Biol. Chem., 1983, 47, 869; (c) D. Raederstorff, A. Y. L. Shu,
J. E. Thompson and C. Djerassi, J. Org. Chem., 1987, 52, 2337.
20 K. Mori and J. Wu, Liebigs Ann. Chem., 1991, 5, 439.
2 For recent reviews on conjugated additions using iminium-ion
activation see, for example: (a) S. B. Tsogoeva, Eur. J. Org. Chem.,
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 4435–4437 | 4437