reduced pressure. The crude material was used without further
5 (a) E. J. Corey and F. -Y. Zhang, Angew. Chem., Int. Ed., 1999, 38, 1931;
(b) T. Ooi, K. Doda and K. Maruoka, J. Am. Chem. Soc., 2003, 125,
2054; (c) H. Li, B. Wang and L. Deng, J. Am. Chem. Soc., 2006, 128,
732; (d) T. Marcelli, R. N. S. Van, der Haas, J. H. Van Maarseveen and
H. Hiemstra, Angew. Chem., Int. Ed., 2006, 45, 929; (e) Y. Sohtome,
Y. Hashimoto and K. Nagasawa, Eur. J. Org. Chem., 2006, 2894;
(f) T. Mandal, S. Samanta and C. -G. Zhao, Org. Lett., 2007, 9, 943;
(g) D. Uraguchi, S. Sakaki and T. Ooi, J. Am. Chem. Soc., 2007, 129,
12392.
6 (a) C. Christensen, K. Juhl and K. A. Jørgensen, Chem. Commun., 2001,
2222; (b) C. Christensen, K. Juhl, R. G. Hazell and K. A. Jørgensen,
J. Org. Chem., 2002, 67, 4875; (c) K. V. Risgaard, K. A. Gothelf and
K. A. Jørgensen, Org. Biomol. Chem., 2003, 1, 153; (d) D. A. Evans, D.
Seidel, M. Rueping, H. W. Lam, J. T. Shaw and C. W. Downey, J. Am.
Chem. Soc., 2003, 125, 12692; (e) S. F. Lu, D. M. Du, S. W. Zhang
and J. X. Xu, Tetrahedron: Asymmetry, 2004, 15, 3433; (f) D. M. Du,
S. F. Lu, T. Fang and J. X. Xu, J. Org. Chem., 2005, 70, 3712; (g) S. K.
Ginotra and V. K. Singh, Org. Biomol. Chem., 2007, 5, 3932; (h) A.
Toussaint and A. Pfaltz, Eur. J. Org. Chem., 2008, 4591.
7 H. Maheswaran, K. L. Prasant, G. G. Krishna, K. Ravikumar, B.
Sridhar and M. L. Kantam, Chem. Commun., 2006, 4066.
8 K. Ma and J. You, Chem.–Eur. J., 2007, 13, 1863.
9 (a) T. Arai, M. Wantanabe, A. Fujiwara, N. Yokayama and A.
Yanagisawa, Angew. Chem., Int. Ed., 2006, 45, 5978; (b) M. Bandini,
F. Piccinelli, S. Tommasi, A. Umani-Ronchi and C. Ventrici, Chem.
Commun., 2007, 616; (c) M. Bandini, M. Benaglia, R. Sinisi, S. Tommasi
and A. Umani-Ronchi, Org. Lett., 2007, 9, 2151; (d) T. Arai, M.
Watanabe and A. Yanagisawa, Org. Lett., 2007, 9, 3595.
10 T. Arai, R. Takashita, Y. Endo, M. Watanabe and A. Yanagisawa,
J. Org. Chem., 2008, 73, 4903.
11 (a) G. Blay, E. Climent, I. Ferna´ndez, V. Herna´ndez-Olmos and J. R.
Pedro, Tetrahedron: Asymmetry, 2007, 18, 1603; (b) G. Blay, L. R.
Domingo, V. Herna´ndez-Olmos and J. R. Pedro, Chem.–Eur. J., 2008,
14, 4725.
12 (a) Y. Xiong, F. Wang, X. Huang, Y. Wen and X. Feng, Chem. Eur. J.,
2007, 13, 829; (b) B. Qin, X. Xiao, X. Liu, J. Huang, Y. Wen and X.
Feng, J. Org. Chem., 2007, 72, 9323.
13 (a) B. M. Trost and V. S. C. Yeh, Angew. Chem., Int. Ed., 2002, 41,
861; (b) C. Palomo, M. Oiarbide and A. Laso, Angew. Chem., Int.
Ed., 2005, 44, 3881; (c) S. Liu and C. Wolf, Org. Lett., 2008, 10,
1831; (d) A. Bulut, A. Aslan and O. Dogan, J. Org. Chem., 2008, 73,
7373.
◦
25
purification. Yield 92%; white solid; mp 54–56 C; [a]D +9.1 (c
1.68, EtOH); [lit.23 (S) ee = 100%; [a]D +47.9 (c 2.4, EtOH)]; IR
20
n
max/cm-1 (film) 3384, 2925, 2855; 1H NMR (500 MHz, CDCl3): d
2.79 (m, 1H), 3.0 (m, 1H), 3.46 (bs, 1H), 4.63 (m, 1H), 7.25–7.36
(m, 5H); 13C NMR (125 MHz, CDCl3): d 49.3, 74.4, 125.9, 127.6,
128.5, 128.6, 142.6; HRMS (ES+) calc. for C8H11NO 138.0920,
[M + H]+ found 138.0919.
Synthesis of (R)-2-phenyl-1-tosylaziridine (13). p-Toluene sul-
fonyl chloride (1.2 mmol) was added in portions to a solution of
amino alcohol 12 (1 mmol) and diisopropylethylamine (2 mmol)
◦
in CH2Cl2 (4 mL) at 0 C. The ice bath was then removed, and
the reaction was allowed to warm to rt and further stirred for
6 h. The reaction mixture was then washed with water, brine
and dried over anhydrous Na2SO4. The organic layer was then
concentrated and the crude product was purified by column
chromatography on silica gel to afford the sulfonylated amino
alcohol. To this N-sulfonyl-substituted amino alcohol in dry THF
(4 mL) was added triphenylphosphine (1.2 mmol) in one portion
◦
at rt. The reaction mixture was then cooled to 0 C, and treated
slowly with diisopropylazodicarboxylate (1.2 mmol). The ice bath
was removed and the yellow solution was stirred at rt for 6 h.
THF was evaporated, and the residue was purified by column
chromatography to yield the chiral aziridine 13. Yield 85%; white
solid, mp 82–84 ◦C; TLC Rf 0.8 (40% EA in petroleum ether);
25
1
[a]D -86.4 (c 1.0, CHCl3); IR nmax/cm-1 (pellet) 3038, 1385; H
NMR (500 MHz, CDCl3): d 2.38 (m, 1H), 2.42 (s, 3H), 2.98 (m,
1H), 3.77 (m, 1H), 7.2–7.33 (m, 7H), 7.87 (m, 2H); 13C NMR
(125 MHz, CDCl3): d 21.8, 36.1, 41.1, 126.7, 128.0, 128.4, 128.7,
129.9, 135.0, 135.1, 144.8; HRMS (ES+) calc. for C15H15NO2S
274.0902, [M + H]+ found 274. 0903.; Enantiomeric excess was
determined by HPLC with a Chiralcel OJ-H column (n-hexane/2-
propanol 90:10, l = 254 nm); flow rate 0.8 mL/min; tR(minor)
=
14 (a) Y. Kogami, T. Nakajima, T. Ashizawa, S. Kezuka, T. Ikeno and T.
Yamada, Chem. Lett., 2004, 614; (b) Y. Kogami, T. Nakajima, T. Ikeno
and T. Yamada, Synthesis, 2004, 1947.
37.47 min (S), tR(major) = 44.43 min (R).
15 B. M. Choudary, K. V. S. Ranganath, U. Pal, M. L. Kantam and B.
Sreedhar, J. Am. Chem. Soc., 2005, 127, 13167.
Acknowledgements
16 (a) R. Kowalcyzk, P. Kwiatkowski, J. Skarzewski and J. Jurczak, J. Org.
Chem., 2009, 74, 753; (b) A. Zulauf, M. Mellah and E. Schulz, J. Org.
Chem., 2009, DOI: 10.1021/jo802769y.
V.K.S. thanks the Department of Science and Technology, India
for a research grant through J.C.Bose fellowship. S.S. and D.S.
thank the Council of Scientific and Industrial Research, New Delhi
for research fellowships.
17 R. Noyori, Asymmetric Catalysis in Organic synthesis, Wiley, New York,
1994.
18 (a) D. Bhuniya, A. Dattagupta and V. K. Singh, Tetrahedron Lett.,
1995, 36, 2847; (b) D. Bhuniya, A. Dattagupta and V. K. Singh, J. Org.
Chem., 1996, 61, 6108; (c) P. Saravanan and V. K. Singh, Tetrahedron
Lett., 1998, 39, 167; (d) V. Maya and V. K. Singh, Org. Lett., 2007, 9,
1117.
Notes and references
1 L. Henry, C. R. Hebd. Seances Acad. Sci., 1895, 120, 1265.
2 (a) L. Allmendiger, G. Bauschke and F. F. Paintner, Synlett, 2005, 2615;
(b) N. Gogoi, J. Boruwa and N. C. Barua, Tetrahedron Lett., 2005, 46,
7581; (c) F. F. Paintner, L. Allmendiger, G. Bauschke and P. Klemmann,
Org. Lett., 2005, 7, 1423; (d) H. Li, B. Wang and L. Deng, J. Am. Chem.
Soc., 2006, 128, 732.
3 (a) D. Seebach, A. K. Beck, T. Mukhopadhyay and E. Thomas,
Helv. Chim, Acta, 1982, 65, 1101; (b) G. Rosini, In Comprehensive
Organic Synthesis, B. M. Trost, I. Fleming and C. H. Heathcock,
Eds.; Pergamon, New York, 1996; Vol. 2, pp 321; (c) F. A. Luzzio,
Tetrahedron, 2001, 57, 915; (d) N. Ono, The Nitro Group in Organic
Synthesis, Wiley-VCH, New York, 2001.
4 (a) H. Sasai, T. Suzuki, S. Arai, T. Arai and M. Shibasaki, J. Am. Chem.
Soc., 1992, 114, 4418; (b) T. Arai, Y. M. A. Yamada, N. Yamamoto, H.
Sasai and M. Shibasaki, Chem.–Eur. J., 1996, 2, 1368; (c) N. Yoshikawa
and M. Shibasaki, Chem. Rev., 2002, 102, 2187; (d) S. Handa, K.
Nagawa, Y. Sohtome, S. Matsunaga and M. Shibhasaki, Angew. Chem.,
Int. Ed., 2008, 47, 3230.
19 (a) G. Zadel and E. Breitmaier, Chem. Ber., 1994, 127, 1323; (b) D.
Nakamura, K. Kakiuchi, K. Koga and R. Shirai, Org. Lett., 2006, 8,
6139; (c) H. Tang, G. Zhao, Z. Zhou, Q. Zhou and C. Tang, Tetrahedron
Lett., 2006, 47, 5717; (d) H. Tang, G. Zhao, Z. Zhou, P. Gao, L. He
and C. Tang, Eur. J. Org. Chem., 2008, 126.
20 (a) G. J. Rowlands, Tetrahedron, 2001, 57, 1865; (b) H. Groger, Chem.–
Eur. J., 2001, 7, 5247; (c) M. Shibasaki and N. Yoshikawa, Chem. Rev.,
2002, 102, 2187; (d) M. Shibasaki, M. Kanai and K. Funabashi, Chem.
Commun., 2002, 1989; (e) J.-A. Ma and D. Cahard, Angew. Chem., Int.
Ed., 2004, 43, 4566.
21 (a) J. C. Rohloff and M. E. Jung, J. Org. Chem., 1985, 50, 4909;
(b) B. McKeever and G. Pattenden, Tetrahedron, 2003, 59, 2701; (c) A.
Boruah, N. I. Rao, J. P. Nandy, S. K. Kumar, A. C. Kunwar and J.
Iqbal, J. Org. Chem., 2003, 68, 5006; (d) J. P. Cain, A. V. Mayorov,
M. Cai, H. Wang, B. Tan, K. Chandler, Y. Lee, R. R. Petrov, D.
Trivedi and V. J. Hruby, Bioorg. Med. Chem. Lett., 2006, 16, 5462;
(e) T. Tullberg, M. Grotli and M. K. Luthman, Tetrahedron, 2006, 62,
7484.
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 3156–3162 | 3161
©