24
Letters in Organic Chemistry, 2009, Vol. 6, No. 1
Temperini et al.
[3]
[4]
Walton, R.B.; Woodruff, H.B. J. Clin. Invest., 1949, 28, 924.
Peypoux, F.; Guinand, M.; Michel, G.; Delcambe, L.; Das, B.C.;
Varenne, P.; Lederer, E. Tetrahedron, 1973, 29, 3455.
Volpon, L; Besson, F.; Lancelin, J. M. Eur. J. Biochem., 1999, 264,
200.
Bland, J.M. J. Org. Chem., 1996, 61, 5663.
Nagai, U.; Besson, F.; Peypoux, F. Tetrahedron Lett., 1979, 20,
2359.
Kawato, H.C.; Nakayama, K.; Inagaki, H.; Nakajima, R.; Kitamura,
A.; Someya, K.; Ohta, T. Org. Lett., 2000, 2, 973.
Enders, D.; Wahl, H.; Bettray, W. Angew. Chem. Int. Ed., 1995, 34,
455.
Bland, J.M. Synth. Commun., 1995, 25, 467.
Sibi, M.P.; Deshpande, P.K. J. Chem. Soc. Perkin Trans.1, 2000,
1461.
GC-MS (EI, 70 eV): m/z (%) = 387 (61) [M]+, 314 (53), 232 (52),
200 (100), 160 (54), 130 (35); FT-IR (diffuse reflectance): 2915,
1733, 1702, 1370, 976 cm-1; Anal. Calcd for C23H33NO4 (387.5): C,
71.29; H, 8.58; N, 3.61; Found: C, 71.66; H, 8.21; N, 3.19.
[5]
[19]
Conversion of selenocarboxylic acid Se-phenyl esters (8) into acid
(10): A mixture of selenocarboxylic acid Se-phenyl ester (8) (1
mmol) and copper (II) chloride hydrated (1.1 mmol) in acetonitrile
(8 mL) was stirred at room temperature. The progress of the reac-
tion was monitored by TLC. After 14 h the selenolester was com-
pletely consumed. Tartaric acid (1.2 mmol) was then added. The
reaction mixture was stirred for few minutes, then filtered through
a celite path and the filtrate concentrated. The crude product was
purified by column chromatography on silica gel using a 98:2 mix-
ture of dichloromethane and methanol as eluant. Compound (10)
was obtained as colorless oil in 68% global yield. Selected data for
[6]
[7]
[8]
[9]
[10]
[11]
compound (10): [ꢀ]D31 = -29.57 (c= 0.45 in DMSO); 1H NMR (200
[12]
[13]
Tiecco, M.; Testaferri, L.; Temperini, A.; Bagnoli, L.; Marini, F.;
Santi, C.; Terlizzi, R. Eur. J. Org. Chem., 2004, 3447.
Tiecco, M.; Testaferri, L.; Temperini, A.; Terlizzi, R.; Bagnoli, L.;
Marini, F.; Santi, C. Tetrahedron Lett., 2007, 48, 4343.
Schwab, J.M.; Lin, D.C.T. J. Am. Chem. Soc., 1985, 107, 6046.
Pons, J.-M.; Kocienski, P. Tetrahedron Lett., 1989, 30, 1833.
Noyori, R.; Tomino, I.; Yamada, M.; Nishizawa, M. J. Am. Chem.
Soc., 1984, 106, 6717.
MHz, CDCl3, TMS): ꢁ = 0.85 (t, J = 6.5 Hz, 3H, CH3), 1.10-1.31
(m, 18H, CH2), 1.58-1.81 (m, 1H, CH2), 1.96-2.21 (m, 1H, CH2),
2.82 (dd, J= 16.6, 5.4 Hz, 1H, CH2), 3.21 (dd, J= 16.6, 9.5 Hz, 1H,
CH2), 4.65 (m, 1H, CHN), 7.76-7.90 (m, 4H, CH), 8.56 (brs, 1H,
[14]
[15]
[16]
OH); 13C NMR (50 MHz, CDCl3, TMS): ꢁ = 13.9, 22.5, 26.1, 28.9,
29.1, 29.2, 29.3, 29.4 (2C), 31.7, 32.2, 36.6, 47.6, 123.1 (2C), 129.2
(2C), 135.3 (2C), 168.2 (2C), 176.7; FT-IR (diffuse reflectance):
2921, 2853, 1704.7, 1712.5, 1375.4 cm-1; Anal. Calcd for
C22H31NO4 (373.4): C, 70.75; H, 8.37; N, 3.75: Found: C, 70.30; H,
8.99; N, 4.08.
27
[17]
Selected data for compound (6): colorless wax mp 30-32 °C; [ꢀ]D
= + 3.51 (c = 1.69 in Et2O); HPLC analysis: Chiracel OD-H col-
umn (250x4 mm, Daicel), eluent: i-PrOH/hexane (0.4:99.6) flow
rate: 0.5 mL/min, UV detection at 230 nm; tR 27.3 min: er = 92:8;
1H NMR (200 MHz, CDCl3, TMS): ꢁ= 0.94 (t, J = 6.9 Hz, 3H,
CH3), 1.27-1.49 (m, 18H, CH2), 2.09-2.30 (m, 2H, CH2), 2.43 (d, J
= 2.5 Hz, 1H, CH), 5.11 (td, J = 8.0, 2.5 Hz, 1 H; CHN), 7.73-7.95
(m, 4H, CH); 13C NMR (50 MHz, CDCl3, TMS): ꢁ = 14.0, 22.6,
26.1, 28.7, 29.2, 29.3, 29.4, 29.5 (2C), 31.8, 33.3, 41.4, 71.7, 80.3,
123.3 (2C), 131.7 (2C), 134.0 (2C), 167.0 (2C); GC-MS (EI, 70
eV): m/z (%) = 296 (17)[M-41]+, 212 (10), 199 (16), 184 (100), 130
(21), 94 (12); FT-IR (diffuse reflectance): 2922, 2115, 1766, 1713,
1385, 1077 cm-1; Anal. Calcd for C22H29NO2 (339.4):C, 77.84; H,
8.61; N, 4.13. Found: C, 77.41; H, 8.90; N, 3.85.
[20]
Formation of (R)-2 hydrochloride by deprotection of 10: Hydrazine
hydrate (0.11 mL, 2.2 mmol) was added to a stirred solution of 10
(0.37 g, 1 mmol) in EtOH (3 mL). After stirring for 5 h at 100 °C,
the reaction mixture was allowed to slowly reach room temperature
and concentrated. The residue was treated with 6 mL of 2N hydro-
chloric acid, the solid was allowed to settle down and then filtered.
Evaporation of the filtrate gave a residue which was dried under
reduced pressure to afford (R)-2 hydrochloride in 68% yield. Selec-
25
ted data for compound 2: White solid mp 131-135 °C; [ꢀ]D
=
-17.80 (c= 0.59 in H2O). 1H NMR (200 MHz, D2O): ꢁ = 0.65-0.81
(m, 3H, CH3), 0.97-1.35 (m, 18H, CH2), 1.42-1.78 (m, 2H, CH2),
2.62 (d, J= 6.3 Hz, 2H, CH2), 3.38-3.57 (m, 1H, CHN); 13C NMR
[18]
Selected data for compound (9): pale yellow oil; [ꢀ]D29 = 2.48 (c=
1.43 in CHCl3); HPLC analysis: Chiracel OD-H column (250x4
mm, Daicel), eluent: i-PrOH/hexane (1:99) flow rate: 0.5 mL/min,
(50 MHz, D2O): ꢁ = 14.4, 23.3, 26.0, 28.9, 29.9, 30.2, 30.3, 30.5
(2C), 32.6, 32.8, 48.9, 67.2, 174.2; FT-IR (diffuse reflectance):
2923, 1946.7, 1711.5, 1482.9 cm-1; Anal. Calcd for C14H30ClNO2
(279.8): C, 60.09; H, 10.81; N, 5.01. Found: C, 59.80; H, 11.27; N,
4.78.
McArthur, C.R.; Worster, P.M.; Okon, A.U. Synth. Commun.,
1983, 13, 311.
Bocchi, V.; Casnati, G.; Dossena, A.; Marchelli, R. Synthesis,
1984, 961.
1
UV detection at 230 nm; tR 33.6 min: er = 92:8; H NMR (200
MHz, CDCl3, TMS): ꢁ = 0.68-0.92 (m, 3H, CH3), 1.05-1.31 (m,
18H, CH2), 1.55-1.76 (m, 2H, CH2), 2.61 (dd, J= 16.1 , 5.3 Hz, 1H,
CH2), 3.11 (dd, J= 16.1, 9.5 Hz, 1H, CH2), 3.55 (s, 3H, CH3) 4.58
(m, 1H, CHN), 7.65-7.90 (m, 4H, CH); 13C NMR (50 MHz, CDCl3,
TMS): ꢁ = 14.0, 22.5, 26.2, 28.7, 29.4 (4C), 31.0, 31.7, 32.2, 36.6,
47.9, 51.6, 123.1 (2C), 131.6 (2C), 133.8 (2C), 168.2 (2C), 171.3;
[21]
[22]