M. D. Shoulders et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3859–3862
3861
Award in Bioorganic and Medicinal Chemistry. The authors are
grateful to Dr. C. G. Fry for assistance with NMR experiments and
A. Choudhary for contributive discussions. This work was sup-
ported by Grant AR044276 (NIH). M.D.S. was supported by US
Department of Homeland Security and ACS Division of Medicinal
Chemistry graduate fellowships, and Chemistry–Biology Interface
Training Grant GM008505 (NIH). CD spectroscopy and mass spec-
trometry were performed at the University of Wisconsin–Madison
Biophysics Instrumentation Facility, which was established with
grants BIR-9512577 (NSF) and S10 RR13790 (NIH). NMR experi-
ments were performed at the National Magnetic Resonance Facility
at Madison, which is supported by Grant P41RR02301 (NIH), and
the University of Wisconsin Magnetic Resonance Facility, which
is supported by Grant CHE-9629688 (NSF).
A
5
0
Flp-CRP
Dfp-CRP Pro-CRP
–5
–10
–15
–20
–25
–30
220
230
240
250
260
210
wavelength (nm)
B
5
4
Supplementary data
Flp-CRP
3
Pro-CRP
Dfp-CRP
Supplementary data (detailed procedures for the syntheses and
analyses of Ac-Dfp-OMe and the peptides) associated with this
article can be found, in the online version, at doi:10.1016/
2
1
0
–1
–2
–3
–4
References and notes
1. Shoulders, M. D.; Raines, R. T. Annu. Rev. Biochem. 2009, 78. doi:10.1146/
0
10 20 30 40 50 60 70 80 90
2. Berg, R. A.; Prockop, D. J. Biochem. Biophys. Res. Commun. 1973, 52, 115.
3. Sakakibara, S.; Inouye, K.; Shudo, K.; Kishida, Y.; Kobayashi, Y.; Prockop, D. J.
Biochim. Biophys. Acta 1973, 303, 198.
4. Friedman, L.; Higgin, J. J.; Moulder, G.; Barstead, R.; Raines, R. T.; Kimble, J. Proc.
Natl. Acad. Sci. U.S.A. 2000, 97, 4736.
temperature (°C)
Figure 3. Conformational analysis of Pro-CRP, Flp-CRP, and Dfp-CRP by CD
spectroscopy. (F) Spectra of peptide solutions (90 in 50 mM acetic acid)
lM
incubated at 64 °C for P24 h. (B) Effect of temperature on thermal ellipticity at
225 nm. Data were recorded at 3-°C intervals after a P5-min equilibration. Values
of Tm ( 1 °C) from the average of at least three experiments were Pro-CRP, 43 °C;
Flp-CRP, 48 °C; and Dfp-CRP, 42 °C.
5. Holster, T.; Pakkanen, O.; Soininen, R.; Sormunen, R.; Nokelainen, M.; Kivirikko,
K. I.; Myllyharju, J. J. Biol. Chem. 2007, 282, 2512.
6. The proline ring actually prefers two distinct twist, rather than envelope,
conformations (Giacovazzo, C.; Monaco, H. L.; Artioli, G.; Viterbo, D.; Ferraris,
G.; Gilli, G.; Zanotti, G.; Catti, M. Fundamentals of Crystallography, 2nd ed.;
c
Oxford University Press: Oxford, UK, 2002). As C experiences a large out-of-
plane displacement in the twisted rings, we refer to pyrrolidine ring puckers
c
c
simply as ‘C -exo’ and ‘C -endo’.
modeling (Fig. 2B) suggests that steric hindrance is not a compli-
cating factor. More convincingly, we demonstrated previously that
a methyl group can be incorporated in the same location without
deleterious effects on triple-helix stability.13 Thus, steric hindrance
should not confound our conclusions. Secondly, we must consider
whether any favorable or unfavorable electrostatic interaction is
introduced by the additional fluoro group. Molecular modeling
does not reveal any new electrostatic interactions between proxi-
mal polarized atoms (Fig. 2B). Moreover, the energetic conse-
quences of any such electrostatic interaction are minimized by
our use of a host–guest model system.
In conclusion, we find that the hydrophobic effect is not a dom-
inant stabilizing force for the collagen triple helix (A role for hydro-
phobicity in higher-order collagen assembly is, however,
plausible.26,27) Specifically, our findings validate the theory that
(ProFlpGly)10 triple helices are stabilized by preorganization de-
rived from a stereoelectronic effect that favors backbone torsion
angles appropriate for triple-helix formation, rather than by an en-
hanced hydrophobic effect. Dfp, which has a preorganizational
capacity similar to that of Pro and a hydrophobic effect similar to
that of Flp, provides no net stabilization to the collagen triple helix.
Hence, the burial of fluoro groups upon triple-helix formation pro-
vides negligible benefit. Our findings are consistent with the role of
the 4R-hydroxyl group of Hyp being to stabilize the collagen triple
helix via preorganization.
7. Bretscher, L. E.; Jenkins, C. L.; Taylor, K. M.; DeRider, M. L.; Raines, R. T. J. Am.
Chem. Soc. 2001, 123, 777.
8. Eberhardt, E. S.; Panasik, N., Jr.; Raines, R. T. J. Am. Chem. Soc. 1996, 118, 12261.
9. DeRider, M. L.; Wilkens, S. J.; Waddell, M. J.; Bretscher, L. E.; Weinhold, F.;
Raines, R. T.; Markley, J. L. J. Am. Chem. Soc. 2002, 124, 2497.
10. Improta, R.; Benzi, C.; Barone, V. J. Am. Chem. Soc. 2001, 123, 12568.
11. Vitagliano, L.; Berisio, R.; Mazzarella, L.; Zagari, A. Biopolymers 2001, 58, 459.
12. Babu, I. R.; Ganesh, K. N. J. Am. Chem. Soc. 2001, 123, 2079.
13. Shoulders, M. D.; Hodges, J. A.; Raines, R. T. J. Am. Chem. Soc. 2006, 128, 8112.
14. Kotch, F. W.; Guzei, I. A.; Raines, R. T. J. Am. Chem. Soc. 2008, 130, 2952.
15. Shoulders, M. D.; Guzei, I. A.; Raines, R. T. Biopolymers 2008, 89, 443.
16. Nishi, Y.; Doi, M.; Uchiyama, S.; Nishiuchi, Y.; Nakazawa, T.; Ohkubo, T.;
Kobayashi, Y. Lett. Pept. Sci. 2004, 10, 533.
17. Nishi, Y.; Uchiyama, S.; Doi, M.; Nishiuchi, Y.; Nakazawa, T.; Ohkubo, T.;
Kobayashi, Y. Biochemistry 2005, 44, 6034.
18. Bella, J.; Eaton, M.; Brodsky, B.; Berman, H. M. Science 1994, 266, 75.
19. Smart, B. E. J. Fluorine Chem. 2001, 109, 3.
20. Dill, K. A. Biochemistry 1990, 29, 7133.
21. Bilgicer, B.; Fichera, A.; Kumar, K. J. Am. Chem. Soc. 2001, 123, 4393.
22. Lee, K.-H.; Lee, H.-Y.; Slutsky, M. M.; Anderson, J. T.; Marsh, E. N. G. Biochemistry
2004, 43, 16277.
23. Marsh, E. N. G. Chem. Biol. 2000, 7, R153.
24. Tang, Y.; Ghirlanda, G.; Petka, W. A.; Nakajima, T.; DeGrado, W. F.; Tirrell, D. A.
Angew. Chem., Int. Ed. 2001, 40, 1494.
25. Yoder, N. C.; Kumar, K. Chem. Soc. Rev. 2002, 31, 335.
26. Jones, E. Y.; Miller, A. J. Mol. Biol. 1991, 218, 209.
27. Shah, N. K.; Ramshaw, J. A. M.; Kirkpatrick, A.; Shah, C.; Brodsky, B. Biochemistry
1996, 35, 10262.
28. Renner, C.; Alefelder, S.; Bae, J. H.; Budisa, N.; Huber, R.; Moroder, L. Angew.
Chem., Int. Ed. 2001, 40, 923.
29. Jenkins, C. L.; Lin, G.; Duo, J.; Rapolu, D.; Guzei, I. A.; Raines, R. T.; Krow, G. R. J.
Org. Chem. 2004, 69, 8565.
30. Beck, K.; Chan, V. C.; Shenoy, N.; Kirkpatrick, A.; Ramshaw, J. A. M.; Brodsky, B.
Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 4273.
31. Feng, Y.; Melacini, G.; Goodman, M. Biochemistry 1997, 36, 8716.
32. The observed hyperstability of collagen triple helices with (2S,4S)-4-
fluoroproline in the Xaa position is even less likely to result from an
enhanced hydrophobic effect, because the Xaa position in a triple helix is
significantly more exposed to solvent than is the Yaa position (Hodges, J. A.;
Acknowledgments
This Letter is dedicated to Professor Carlos F. Barbas on the oc-
casion of his winning the 2009 Tetrahedron Young Investigator