5426
P. R. Sacasa et al. / Tetrahedron Letters 50 (2009) 5424–5427
Table 2
Synthesis of
sulfones
3). Thus, treatment of 3a (E/Z, 96:4) with benzenethiol in organic or
protic medium in the presence of ACCN gave E/Z-8a in good to
excellent yields with the ‘overall’ retention of stereochemistry
(Table 2, entries 1 and 2).
(
a
-fluoro)vinyl sulfides via thiodesulfonylation of
(a
-fluoro)vinyl
Yieldd
Entry
Sulfone
Methoda
Productb
(E/Z)c
Thiodesulfonylation appears fairly general since sulfones 3b, 3c,
and 3d with the alkyl (Me), electron-withdrawing (CF3), or elec-
tron-donating (MeO) substituents on the phenyl ring attached to
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
3a (96:4)
3a (96:4)
3a (94:4)
3b (86:14)
3b (86:14)
3b (86:14)
3b (86:14)
3b (86:14)
3c (90:10)
3d (97:3)
3e (88:12)
3f (84:16)
3g
3h (57:43)
3h (57:43)
3h (100:0)
3h (0:100)
3h (100:0)
3h (57:43)
3h (57:43)
A
B
A
A
B
C
C
C
B
B
B
C
B
B
C
C
C
C
B
C
8a
8a
(92:8)
(94:6)
92
65e
50
10a
8b
8b
8b
9b
11b
8c
8d
8e
8f
(83:17)
(93:7)
(92:8)
(92:8)
(92:8)
(94:6)
(93:7)
(93:7)
(70:30)
(70:30)
82, 62f
56
the double bond also produced (
4–6, 9, and 10).38 Thiodesulfonylation of
84:16; 0.5 equiv) with PhSH (1.0 equiv; Method C) in the presence
of the parent -H sulfone E-2b (0.5 equiv) showed that product 8b
a
-fluoro)vinyl sulfides (entries
92f
90
a-fluoro sulfone 3b (E/Z,
69f
60f, 72
73
a
[30 min (70%; E/Z, 93:7; with all Z-3b being consumed); 1 h (88%;
E/Z, 93:7); 2 h (95%; E/Z, 93:7)] is formed faster than 4b [30 min
(35%, E/Z, 90:10), 1 h (45%, E/Z, 88:12); 2 h (48%; E/Z, 88:12)].
Treatment of the unconjugated sulfone 3e or 3f with benzene-
thiol produced the vinyl sulfide 8e or 8f in low yields (entries 11
and 12). Careful analysis of the crude reaction mixture indicated
that Z-3e or Z-3f isomer was consumed during reactions to pro-
duce primarily E-sulfides, while the E-sulfones remained mostly
unreacted. These results are in agreement with the lack of reactiv-
ity of E-2e and E-2f vinyl sulfones. Sulfone 3g produced tetrasub-
stituted sulfide 8g (entry 13).
Reaction of 3h (E/Z, 57:43) with benzenethiol also afforded tet-
rasubstituted (a-fluoro)vinyl sulfide 8h (E/Z, 50:50; entries 14 and
15). Thiodesulfonylation was not stereospecific since reactions of
pure E-3h or Z-3h with benzenethiol also gave 8h as mixture of
E/Z-isomers (entries 16 and 17). Thiodesulfonylation occurred with
other aromatic thiols to yield various vinyl sulfides (entries 3, 7,
and 8, 18–20). It is noteworthy that hydrothiolation approaches
10g
12h
65
58
68
85
70
96
59
8g
8h
8h
8h
8h
9h
9h
11h
(50:50)
(50:50)
(50:50)
(33:67)
(64:36)
(50:50)
(55:45)
42
a
Method A: thiol/ACCN/toluene/110 °C/6 h; Method B: thiol/ACCN/H2O/100 °C/
6 h; Method C: thiol/ACCN/MeOH/65 °C/5 h.
b
Reactions were performed on 0.1–0.5 mmol scale of sulfones (0.05 mM) with
1.25–2.0 equiv of thiols and 0.25–0.50 equiv of ACCN or AIBN.
c
Determined by GC–MS and 1H or 19F NMR.
Isolated yield.
Reaction with phenyl disulfide gave 8a (55%, Method B or C).
AIBN instead of ACCN.
83% based on Z-3e.
75% based on Z-3f.
d
e
f
g
h
are inapplicable for the synthesis of (a-fluoro)vinyl sulfides since
the 1-fluoroalkynes are unstable and virtually unknown.39
Desulfonylation occurred probably via b-elimination of the sul-
fonyl radical from the radical intermediates formed after addition
of PhSÅ to vinyl sulfones (presumably via a radical addition–elimi-
nation mechanism).30,32 Lack of stereochemistry is probably the re-
sult of cis–trans isomerization of a radical intermediate leading
predominantly to the formation of the more stable E isomers under
thermal conditions.5
offers for the first time a general and bench-friendly procedure for
the synthesis of (a-fluoro)vinyl sulfides.
Acknowledgments
This investigation was supported by award SC1CA138176 from
NIGMS and NCI. P.R.S. and J.Z. were sponsored by the MBRS RISE
program (NIGMS; R25 GM61347).
In summary, we have developed radical-mediated thiodesulf-
onylations of the vinyl and (a-fluoro)vinyl sulfones with aryl thiols
to provide access to vinyl and (
a
-fluoro)vinyl sulfides. This method
References and notes
1. Trost, B. M.; Lavoie, A. C. J. Am. Chem. Soc. 1983, 105, 5075–5090.
2. Narasaka, K.; Hayashi, Y.; Shimadzu, H.; Niihata, S. J. Am. Chem. Soc. 1992, 114,
8869–8885.
3. Dubbaka, S. R.; Vogel, P. Angew. Chem., Int. Ed. 2005, 44, 7674–7684.
4. Aucagne, V.; Tatibouët, A.; Rollin, P. Tetrahedron 2004, 60, 1817–1826.
5. Oswald, A. A.; Griesbaum, K.; Hudson, B. E.; Bregman, J. M. J. Am. Chem. Soc.
1964, 86, 2877–2884.
R2
R2
SH
R1
O
R1
S
O
S
Method A, B or C
R
R
6. Kabir, M. S.; Van Linn, M. L.; Monte, A.; Cook, J. M. Org. Lett. 2008, 10, 3363–
3366.
7. Yatsumonji, Y.; Okada, O.; Tsubouchi, A.; Takeda, T. Tetrahedron 2006, 62,
9981–9987.
8. Silveira, C. C.; Santos, P. C. S.; Mendes, S. R.; Braga, A. L. J. Organomet. Chem.
2008, 693, 3787–3790.
9. Kondo, T.; Mitsudo, T.-A. Chem. Rev. 2000, 100, 3205–3220.
10. Shoai, S.; Bichler, P.; Kang, B.; Buckley, H.; Love, J. A. Organometallics 2007, 26,
5778–5781.
11. Silva, M. S.; Lara, R. G.; Marczewski, J. M.; Jacob, R. G.; Lenardão, E. J.; Perin, G.
Tetrahedron Lett. 2008, 49, 1927–1930.
12. Ananikov, V. P.; Orlov, N. V.; Beletskaya, I. P.; Khrustalev, V. N.; Antipin, M. Y.;
Timofeeva, T. V. J. Am. Chem. Soc. 2007, 129, 7252–7253.
13. Sridhar, R.; Surendra, K.; Krishnaveni, N. S.; Srinivas, B.; Rao, K. R. Synlett 2006,
3495–3497.
14. Warner, D. R.; Hoffman, J. L. Biochemistry 1996, 35, 4480–4484.
15. Zhao, G.; Zhou, Z. S. Bioorg. Med. Chem. Lett. 2001, 11, 2331–2335.
16. Leopold, W. R.; Miller, J. A.; Miller, E. C. Cancer Res. 1982, 42, 4364–4374.
17. Palmer, J. T.; Rasnick, D.; Klaus, J. L.; Bromme, D. J. Med. Chem. 1995, 38, 3193–
3196.
18. Meadows, D. C.; Gervay-Hague, J. Med. Res. Rev. 2006, 26, 793–814.
19. Coutrot, P.; Laurenco, C.; Petrova, J.; Savignac, P. Synthesis 1976, 107–110.
20. Comasseto, J. V.; Menezes, P. H.; Stefani, H. A.; Zeni, G.; Braga, A. L. Tetrahedron
1996, 52, 9687–9702.
F
F
3
8 R2 = H
9 R2 = CH3
10 R2 = NH2
11 R2 = CO2Me
R1
R
Series:
a
b
c
d
e
f
C6H5
H
H
H
H
H
H
4-(CH3)C6H4
4-(CF3)C6H4
3,4-(MeO)2C6H3
C6H5CH2CH2
c-C6H11
g
h
-(CH2)5-
C6H5
CH3
Scheme 3. Thiodesulfonylation of (E/Z)-(
-fluoro)vinyl sulfides.
a-fluoro)vinyl sulfones. Synthesis of (E/Z)-
(a