10.1002/adsc.202100494
Advanced Synthesis & Catalysis
Acknowledgements
[10] a. X. Zhu, K. Venkatasubbaiah, M. Weck, C. W. Jones,
ChemCatChem 2010, 2, 1252-1259; b. T. Belser, E. N.
Jacobsen, Adv. Synth. Catal. 2008, 350, 967-971; c. B.
M. Rossbach, K. Leopold, R. Weberskirch, Angew.
Chem. Int. Ed. 2006, 45, 1309-1312; Angew. Chem.
2006, 118, 1331 – 1335; d. X. Zheng, C. W. Jones, M.
Weck, Chem. Eur. J. 2006, 12, 576-583; e. S.-D. Choi,
G.-J. Kim, Catal. Lett. 2004, 92, 35-40; f. D. A. Annis,
E. N. Jacobsen, J. Am. Chem. Soc. 1999, 121, 4147-
4154.
[11] a. J. Park, K. Lang, K. A. Abboud, S. Hong, Chem. Eur.
J. 2011, 17, 2236-2245; b. J. Park, K. Lang, K. A.
Abboud, S. Hong, J. Am. Chem. Soc. 2008, 130,
16484-16485.
[12] T. Kitanosono, K. Masuda, P. Xu, S. Kobayashi, Chem.
Rev. 2017, 118, 679-746.
[13] S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H.
C. Kolb, K. B. Sharpless, Angew. Chem. Int. Ed. 2005,
44, 3275-3279; Angew. Chem. 2005, 117, 3339-3343.
[14] a. M. F. Ruiz-Lopez, J. S. Francisco, M. T. C. Martins-
Costa, J. M. Anglada, Nat. Rev. Chem. 2020, 4, 459-
475; b. W. Guo, X. Liu, Y. Liu, C. Li, ACS Catal. 2017,
8, 328-341.
[15] a. C. Z. J. Ren, P. Solís Muñana, J. Dupont, S. S. Zhou,
J. L. Y. Chen, Angew. Chem. Int. Ed. 2019, 58, 15254-
15258; Angew. Chem. 2019, 131, 15398-15402; b. P.
Solís Muñana, G. Ragazzon, J. Dupont, C. Z. J. Ren,
L. J. Prins, J. L. Y. Chen, Angew. Chem. Int. Ed. 2018,
57, 16469-16474; Angew. Chem. 2018, 130, 16707-
16712.
[16] It is important to note that the mechanism of rate
acceleration in these examples is distinctly different to
conventional micellar catalysis. In the above systems,
rate enhancement is due to an increase in cooperativity
between catalytic units, whereas micellar catalysis
relies on an increase in reactant concentration in the
hydrophobic core of the micellar structures.
This work was supported by a Catalyst: Seeding Grant (CSG-
AUT1701), administered by the Royal Society of New Zealand and
funded by the Ministry of Business, Innovation and Employment;
and by a grant from the Australian Centre for Neutron Scattering,
ANSTO (Neutron proposal: 8756). Funding was also received
from the MacDiarmid Institute for Advanced Materials and
Nanotechnology (Wellington, NZ).
References
[1] a. A. J. T. Smith, R. Mꢀller, M. D. Toscano, P. Kast,
H. W. Hellinga, D. Hilvert, K. N. Houk, J. Am. Chem.
Soc. 2008, 130, 15361-15373; b. A. J. Kirby, Angew.
Chem. Int. Ed. Engl. 1996, 35, 706-724; Angew. Chem.
1996, 108, 770-790.
[2] a. G. Dodson, Trends Biochem. Sci. 1998, 23, 347-352;
b. R. Breslow, D. L. Huang, E. Anslyn, Proc. Natl.
Acad. Sci. 1989, 86, 1746-1750.
[3] a. M. D. Nothling, Z. Xiao, A. Bhaskaran, M. T. Blyth,
C. W. Bennett, M. L. Coote, L. A. Connal, ACS Catal.
2018, 9, 168-187; b. M. D. Nothling, A. Ganesan, K.
Condic-Jurkic, E. Pressly, A. Davalos, M. R. Gotrik, Z.
Xiao, E. Khoshdel, C. J. Hawker, M. L. O'Mara, M. L.
Coote, L. A. Connal, Chem 2017, 2, 732-745; c. E.
Kuah, S. Toh, J. Yee, Q. Ma, Z. Gao, Chem. Eur. J.
2016, 22, 8404-8430; d. M. Raynal, P. Ballester, A.
Vidal-Ferran, P. W. N. M. van Leeuwen, Chem. Soc.
Rev. 2014, 43, 1734-1787; e. A. E. Allen, D. W. C.
MacMillan, Chem. Sci. 2012, 3, 633-658; f. B. M.
Trost, X. Luan, J. Am. Chem. Soc. 2011, 133, 1706-
1709; g. G. J. Rowlands, Tetrahedron 2001, 57, 1865-
1882.
[4] a. S. E. Schaus, B. D. Brandes, J. F. Larrow, M.
Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow,
E. N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 1307-
1315; b. M. Tokunaga, J. F. Larrow, F. Kakiuchi, E. N.
Jacobsen, Science 1997, 277, 936-938.
[17] C. Z. J. Ren, P. Solís-Muñana, G. G. Warr, J. L. Y.
Chen, ACS Catal. 2020, 10, 8395-8401.
[18] S. S. Thakur, W. Li, C.-K. Shin, G.-J. Kim, Catal. Lett.
2005, 104, 151-156.
[5] J. F. Larrow, P. F. Quigley, in Comprehensive
Chirality, 2012, pp. 129-146.
[6] a. L. P. C. Nielsen, S. J. Zuend, D. D. Ford, E. N.
Jacobsen, J. Org. Chem. 2012, 77, 2486-2495; b. L. P.
C. Nielsen, C. P. Stevenson, D. G. Blackmond, E. N.
Jacobsen, J. Am. Chem. Soc. 2004, 126, 1360-1362.
[7] a. J.-N. Rebilly, B. Colasson, O. Bistri, D. Over, O.
Reinaud, Chem. Soc. Rev. 2015, 44, 467-489; b. S. J.
Wezenberg, A. W. Kleij, Adv. Synth. Catal. 2010, 352,
85-91; c. R. G. Konsler, J. Karl, E. N. Jacobsen, J. Am.
Chem. Soc. 1998, 120, 10780-10781.
[8] a. D. E. White, P. M. Tadross, Z. Lu, E. N. Jacobsen,
Tetrahedron 2014, 70, 4165-4180; b. X. Zheng, C. W.
Jones, M. Weck, J. Am. Chem. Soc. 2007, 129, 1105-
1112; c. D. E. White, E. N. Jacobsen, Tetrahedron:
Asymmetry 2003, 14, 3633-3638; d. J. M. Ready, E. N.
Jacobsen, Angew. Chem. Int. Ed. 2002, 41, 1374-1377;
Angew. Chem. 2002, 114, 1432-1435; e. J. M. Ready,
E. N. Jacobsen, J. Am. Chem. Soc. 2001, 123, 2687-
2688.
[19] In these prior examples, either the product of the
reaction (the 1,2-diol), or a solvent was added to keep
the reaction mixture homogeneous. In our studies,
tetrahydrofuran was used.
[20] If dimeric or larger assemblies was predominant in the
system, then rate
=
k[Co(III)dimeric]
≈
(1/2)k[Co(III)total]. In that case, first order
dependence on [catalyst] would be observed.
[21] Sokolova, A.; Whitten, A. E.; de Campo, L.;
Christoforidis, J.; Eltobaji, A.; Barnes, J.; Darmann,
F.; Berry, A. Performance and characteristics of the
BILBY time-of-flight small-angle neutron scattering
instrument. J. Appl. Cryst. 2019, 52, 1-12
[22] Ni(II) complexes were synthesized because the Co(III)
complexes presented broad peaks by NMR, and the
Co(II) complexes are paramagnetic.
[23] R. B. Martin, Chem. Rev. 1996, 96, 3043-3064.
[24] S. Aerts, A. Buekenhoudt, H. Weyten, I. F. J.
Vankelecom, P. A. Jacobs, Tetrahedron Asymmetry
2005, 16, 657-660)
[9] R. Breinbauer, E. N. Jacobsen, Angew. Chem. Int. Ed.
2000, 39, 3604-3607; Angew. Chem. 2000, 112, 3750
– 3753.
6
This article is protected by copyright. All rights reserved.