pubs.acs.org/joc
Asymmetric Syntheses of (-)-Enterolactone and
(70R)-70-Hydroxyenterolactone via Organocatalyzed
Aldol Reaction
Saumen Hajra,* Aswini Kumar Giri, and Sunit Hazra
Department of Chemistry, Indian Institute of Technology,
Kharagpur 721302, India
FIGURE 1. General structure of enterolactone and 70-hydroxyen-
terolactone.
Received April 20, 2009
other biological profiles.4 Consequently, it has been the
synthetic target of many research groups. The routes to
synthesize enantiomerically pure enterolactone include
(i) kinetic resolution,5 (ii) chiral pool approach,6 (iii) trans-
formation of chiral N-alkyl-unsaturated-γ-lactams,7 (iv)
conjugate addition to chiral butenolides,8 (v) chiral Rh(II)-
catalyzed intramolecular insertion,9 (vi) chemoenzymatic
synthesis,10 (vii) bacterial transformation,11 (viii) chiral
auxiliary directed alkylation,12 (ix) asymmetric radical
reaction,13 (x) chemical conversion of natural lignans,14
and (xi) Pd(0)-catalyzed malonate additions.15 70-Hydro-
xyenterolactone 1b, differing with enterolactone in carrying
a hydroxyl group at the benzylic position of β-benzyl
substitution (Figure 1, Z = OH), was detected and tenta-
tively identified in human urine.16 This mammalian lignan
is also derived from the plant lignan 70-hydroxymatairesi-
nol. 70-Hydroxyenterolactone has been synthesized by the
Short syntheses of (-)-enterolactone (1a) and (70R)-70-
hydroxyenterolactone (1b) have been achieved utilizing
organocatalyzed asymmetric cross-aldol reaction of alde-
hydes 2 and 3 and base-mediated alkylation of lactones 5
and 4.
17
Wahala group. Herein, we describe a short route for the
€ € €
asymmetric syntheses of (-)-enterolactone (1a) and (70R)-
70-hydroxyenterolactone (1b).
(4) Setchell, K. D. R.; Adlercreutz. H. In Role of the Gut Flora Toxicity
and Cancer, Mammalian Lignans and Phytoestrogens: Recent Study on the
Formation, Metabolism and Biological Role in Health and Disease; Rowland,
I. R., Ed.; Academic Press: London, 1988; pp 315-345.
(5) Groen, M. B.; Leemhuis, J. Tetrahedron Lett. 1980, 21, 5043–5046.
(6) (a) Ghosh, M. Tetrahedron 2007, 63, 11710–11715. (b) Asaoka, M.;
Fujii, N.; Shima, K.; Takei, H. Chem. Lett. 1988, 805–808.
(7) Yoda, H.; Kitayama, H.; Katagiri, T.; Takabe, K. Tetrahedron 1992,
48, 3313–3322.
(8) Van Oeveren, A.; Jansen, J. F. G. A.; Feringa, B. L. J. Org. Chem.
1994, 59, 5999–6007.
(9) (a) Bode, J. W.; Doyle, M. P.; Protopopova, M. N.; Zhou, Q.-L.
J. Org. Chem. 1996, 61, 9146–9155. (b) Doyle, M. P.; Protopopova, M. N.;
Zhou, Q.-L.; Bode, J. W.; Simonsen, S. H.; Lynch, V. J. Org. Chem. 1995, 60,
6654–6655.
(10) Chenevert, R.; Mohammad-Ziarani, G.; Caron, D.; Dasser, M. Can.
J. Chem. 1999, 77, 223–226.
(11) (a) Jin, J.-S.; Kakiuchi, N.; Hattori, M. Biol. Pharm. Bull. 2007, 30,
2204–2206. (b) Wang, L.-Q.; Meselhy, M. R.; Li, Y.; Qin, G.-W.; Hattori, M.
Chem. Pharm. Bull. 2000, 48, 1606–1610.
(12) Sibi, M. P.; Liu, P.; Johnson, M. D. Can. J. Chem. 2000, 78, 133–138.
(13) Sibi, M. P.; Liu, P.; Ji, J.; Hajra, S.; Chen, J.-X. J. Org. Chem. 2002,
67, 1738–1745.
Lignan natural products have attracted much interest
over the years because of their widespread occurrence in
various plant species, varied biological activities, and use in
folk medicine.1 Among them, enterolactone (Z = H,
Figure 1), unique in lacking para substitution, has been
found in human and animal urine.2 Enterolactone (1a) is
also formed by the metabolism of plant lignans such as
matairesinol, secoisolariciresinol, 7-hydroxymatairesinol,
and lariciresinol by intestinal bacteria.3 Enterolactone dis-
plays antiestrogenic and anticarcinogenic activities among
(1) (a) Cole, J. R.; Wiedhopf, R. M. In Chemistry of Lignans; Rao, C. B. S.,
Ed.; Andhra University Press: Waltair, India, 1978; pp 39-64. (b) Ayres, D. C.;
Loike, J. D. Lignans, Chemical, Biological and Clinical properties; Cambridge
University Press: Cambridge, 1990. (c) Koch, S. S. C.; Chamberlin, A. R. In
Studies in Natural Products Chemistry; Att-ur-Rahman, Ed.; Elsevier Science:
New York, 1995; Vol. 16, pp 687-725. (d) Ward, R. S. Recent Advances in the
Chemistry of Lignans. In Studies in Natural Product Chemistry; Atta-ur Rahman,
Ed.; Elsevier Science: New York, 2000; Vol. 24, pp 739-798.
(2) (a) Setchell, K. D. R.; Lawson, A. M.; Conway, E.; Taylor, N. F.;
Kirk, D. N.; Cooley, G.; Farrant, R. D.; Wynn, S.; Axelson, M. Biochem. J.
1981, 197, 447–458. (b) Setchell, K. D. R.; Lawson, A. M.; Mitchell, F. L.;
Adlercreutz, H.; Kirk, D. N.; Axelson, M. Nature 1980, 287, 740–742.
(c) Stitch, R. S.; Toumba, J. K.; Groen, M. B.; Funke, C. W.; Leemhuis,
J.; Vink, J.; Woods, G. F. Nature 1980, 287, 738–740.
(14) Eklund, P.; Lindholm, A.; Mikkola, J.-P.; Smeds, A.; Lehtila, R.;
€
Sjoholm, R. Org. Lett. 2003, 5, 491–493.
(15) Yan, B.; Spilling, C. D. J. Org. Chem. 2004, 69, 2859–2862.
€
€
(16) (a) Bannwart, C.; Adlercreutz, H.; Makela, T.; Brunow, G.; Hase, T.
Identification of a new mammalian lignan, 7-hydroxyenterolactone in human
urine by GC/MS. 11th International Congress on Mass Spectrometry, Bordeaux,
€
€ €
France, 1988. (b) Adlercreutz, H.; Mousavi, Y.; Loukovaara, M.; Hamalainen, E.
Lignans, Isoflavones, Sex Hormone Metabolism and Breast Cancer. In The New
Biology of Steroid Hormones; Hochberg, R. B., Naftolin, F., Eds.; Raven Press:
New York, 1991; pp 145-154.
€ € €
(3) Heinonen, S.; Nurmi, T.; Liukkonen, K.; Poutanen, K.; Wahala, K.;
Deyama, T.; Nishibe, S.; Adlercreutz, H. J. Agric. Food. Chem. 2001, 49,
3178–3186.
€ € €
(17) (a) Raffaelli, B.; Wahala, K. T.; Hase, T. A. Org. Biomol. Chem.
€
2006, 4, 331–341. (b) Makela, T. H.; Kaltia, S. A.; Wahala, K. T.; Hase, T. A.
Steroids 2001, 66, 777–784.
€
€ € €
7978 J. Org. Chem. 2009, 74, 7978–7981
Published on Web 09/23/2009
DOI: 10.1021/jo900810a
r
2009 American Chemical Society