5630
J. Qu et al. / Tetrahedron Letters 50 (2009) 5628–5630
3. Joule, J. A.. In Science of Synthesis; Thomas, E. J., Ed.; Georg Thieme: Stuttgart,
C25
Germany, 2000; Vol. 10, p 361.
4. Ambros, R.; Von Angerer, S.; Wiegrebe, W. Arch. Pharm. 1988, 321, 481–486.
5. Winters, G.; Di Mola, N.; Berti, M.; Arioli, V. Farmaco 1979, 34, 507–517.
6. Saundane, A. R.; Ranganath, S. H.; Prayagraj, G.; Rudresh, K.; Satyanarayana, N.
D. Orient. J. Chem. 1998, 14, 251–254.
7. Paulo, A.; Gomes, E. T.; Houghton, P. J. J. Nat. Prod. 1995, 58, 1485–1491.
8. Cimanga, K.; De Bruyne, T.; Pieters, L.; Claeys, M.; Vlietinck, A. Tetrahedron Lett.
1996, 37, 1703–1706.
9. Wahyuningsih, T. D.; Kumar, N.; Black, D. StC. Tetrahedron 2007, 63, 6713–
6719.
10. Clayton, K. A.; Black, D. StC.; Harper, J. B. Tetrahedron 2007, 63, 10615–10621.
11. Huang-Hsinmin; Mann, F. G. J. Chem. Soc. 1949, 2911–2914.
12. Gawley, R. E. Org. React. 1988, 35, 1–420.
O24
O1w
N9
C21
C20
C18
C19
C22
C5
C6
C23
C10
C7
C4
C8
13. Beres, M.; Timari, G.; Hajos, G. Tetrahedron Lett. 2002, 43, 6035–6038.
14. Govindachari, T. R.; Sudarsanam, V. Ind. J. Chem. 1967, 5, 16–18.
15. Alvarez, M.; Joule, J. A.. In Science of Synthesis; Black, D. StC., Ed.; Georg Thieme:
Stuttgart, Germany, 2005; Vol. 15, p 661.
16. Van Baelen, G.; Meyers, C.; Lemiere, G. L. F.; Hostyn, S.; Dommisse, R.; Maes, L.;
Augustyns, K.; Haemers, A.; Pieters, L.; Maes, B. U. W. Tetrahedron 2008, 64,
11802–11809.
C11
C3
C2
C12
C17
N1
C16
C15
C13
17. Hiremath, S. P.; Biradar, J. S.; Purohit, M. G. Indian J. Chem., Sect. B 1982, 21,
249–251.
18. Houlihan, W. J.; Parrino, V. A.; Uike, Y. J. Org. Chem. 1981, 46, 4511–4515.
19. Mudry, C. A.; Frasca, A. R. Tetrahedron 1973, 29, 603–613.
20. Blume, R. C.; Lindwall, H. G. J. Org. Chem. 1945, 10, 255–258.
21. Bergman, J.; Pelcman, B. Tetrahedron 1988, 44, 5215–5228.
22. De Cointet, P.; Pigerol, C.; Broll, M.; Eymard, P.; Werbenec, J. P. Eur. J. Med.
Chem. 1976, 11, 471–479.
C14
Figure 2. ORTEP diagram of compound 16d.
23. Colonna, M.; Greci, L.; Poloni, M. J. Chem. Soc., Perkin Trans. 2 1981, 4, 628–632.
24. Broggini, G.; Diliddo, D.; Zecchi, G. J. Heterocycl. Chem. 1991, 28, 89–91.
25. Kempter, G.; Schiewald, E. J. Prakt. Chem. 1965, 28, 169–177.
26. Bahekar, R. H.; Jain, M. R.; Goel, A.; Patel, D. N.; Prajapati, V. M.; Gupta, A. A.;
Jadav, P. A.; Patel, P. R. Bioorg. Med. Chem. 2007, 15, 3248–3265.
27. Przheval’skii, N. M.; Skvortsova, N. S.; Magedov, I. V. Chem. Heterocycl. Compd.
2002, 38, 1055–1061.
28. Representative procedure for indolo[3,2-c]isoquinoline 16a. To a solution of 3-
benzamido-2-phenylindole 15a (70 mg, 0.2 mmol) in toluene (20 mL) was
added P2O5 (0.5 g, 3.5 mmol). The yellow mixture was heated at 120–130 °C
overnight. The reaction mixture was cooled to room temperature and poured
into ice-cold water (20 mL). The solution was neutralized with 2 M NaOH, and
extracted with EtOAc (3 Â 30 mL). The organic layer was collected and dried
over anhydrous sodium sulfate. After evaporation of the solvent, the residue
was chromatographed on silica gel using dichloromethane/light petroleum
(70:30) as eluent to yield indoloisoquinoline 16a as a yellow solid (45 mg,
67%). Mp 291–293 °C. Elem. Anal. Calcd for C21H13BrN2.0.5CH2Cl2 requires C,
tained,30 and the 11H-indolo[3,2-c]isoquinoline structure was con-
firmed. All new compounds were fully characterized by 1H and 13
NMR spectroscopies, IR spectra, mass spectra and elemental anal-
yses, and several by X-ray crystallographic analysis. Known prod-
ucts were characterized by comparison of their 1H NMR spectra
and melting points with those reported in the literature.
In summary, a series of new indolo[3,2-c]isoquinolines has been
produced by the acid-catalyzed cyclization of 3-acetamido-2-
phenylindoles and 3-benzamido-2-phenylindoles, which in turn
were obtained by the Beckmann rearrangement of the related oxi-
mes. However, 2-phenylindole-3-carbaldoxime did not undergo
the Beckmann rearrangement, but gave a 3-cyanoindole. This
methodology provides an effective and flexible route to synthesize
a variety of indolo[3,2-c]isoquinolines, and opens the way for their
systematic biological evaluation.
C
62.1; H, 3.4; N, 6.7. Found: C, 62.3; H, 3.6; N, 6.9.
1490, 1460, 1390, 1350, 1280, 1240, 1160, 1100, 1070, 970, 830, 740 cmÀ1. kmax
(MeOH): 211 nm
30,600 cmÀ1 MÀ1), 238 (32,300), 288 (28,900), 371
mmax (KBr): 3430, 1620, 1500,
(e
(10,200). 1H NMR (300 MHz, DMSO-d6): d 7.28 (1H, t, J 7.4 Hz, ArH), 7.48
(1H, t, J 7.5 Hz, ArH), 7.62–7.78 (6H, m, ArH), 7.92 (1H, t, J 7.6 Hz, ArH), 8.08
(1H, d, J 8.3 Hz, ArH), 8.19 (1H, d, J 7.5 Hz, ArH), 8.53 (1H, d, J 7.9 Hz, ArH),
12.42 (1H, s, NH). 13C NMR (75 MHz, DMSO-d6): d 112.3, 119.7, 120.3, 122.2,
126.2, 126.8, 128.2, 130.3, 131.6, 132.6 (Ar–CH), 121.8 123.0, 124.4, 124.5,
127.5, 133.1, 139.2, 139.8, 151.3 (Ar–C). HRMS (+ESI) m/z 373.0316 (M+H+)
C21H14BrN2, requires 373.0335.
Acknowledgement
We thank the Australian Research Council for financial support.
References and notes
29. Marsili, A. Tetrahedron 1968, 24, 4981–4991.
30. Crystallographic data for the structure in this Letter have been deposited with
the Cambridge Crystallographic Data Centre as supplementary publication no.
CCDC 718540. X-ray crystal structures were obtained by Mohan Bhadbhade,
Crystallography Laboratory, Analytical Centre, The University of New South
Wales, Sydney, Australia.
1. Pyne, S. G.; Tang, M. Curr. Org. Chem. 2005, 9, 1393–1418.
2. Kumar, E.; Suresh, V. K.; Etukala, J. R.; Ablordeppey, S. Y. Mini-Rev. Med. Chem.
2008, 8, 538–554.