the structure, the reaction conditions, such as catalyst loading,
reaction time, and the amount of formalin required, were
optimized for each b-keto ester to achieve the highest enantio-
selectivity under kinetic control. The best results for each
substrate are summarized in Table 2. The reactivity of b-keto
ester 2b with a six-membered ring was lower than that of
b-keto ester 2a, and product 3b was obtained in 91% yield and
85% ee with 1 mol% catalyst after 12 h (entry 2). With the
seven-membered ring b-keto ester 2c, the reaction proceeded
smoothly with 0.1 mol% catalyst, but enantioselectivity was
modest (entry 3, 66% ee). Ni2-1 was also applicable to acyclic
b-keto esters 2d–2g. The reaction of 2d with a methyl sub-
stituent gave product 3d in 79% yield and 81% ee using
0.1 mol% catalyst after 28 h (entry 4). b-Keto esters 2e and
2f with bulkier substituents, however, were much less reactive,
giving products in only 32–43% yield after 48–120 h (entries 5
and 7). For 2e and 2f, the use of paraformaldehyde instead
of formalin effectively improved both yield and enantio-
selectivity. The reaction with 5 equiv. of paraformaldehyde
proceeded well and products 3e and 3f were obtained in good
yield and enantioselectivity using 0.1 mol% catalyst (entry 6,
79% yield, 89% ee; entry 8, 84% yield, 90% ee). With phenyl
ketone 2g, good enantioselectivity was obtained (entries 9–10,
89–94% ee); however, it was difficult to improve the reactivity,
even with paraformaldehyde.
2004, 45, 6117; (c) M. Fujii, Y. Sato, T. Aida and M. Yoshihara,
Chem. Express, 1992, 7, 309.
4 With a Rh-catalyst: (a) R. Kuwano, H. Miyazaki and Y. Ito,
Chem. Commun., 1998, 71; (b) R. Kuwano, H. Miyazaki and
Y. Ito, J. Organomet. Chem., 2000, 603, 18.
5 With a Pd-catalyst: I. Fukuchi, Y. Hamashima and M. Sodeoka,
Adv. Synth. Catal., 2007, 349, 509.
6 (a) S. Ishikawa, T. Hamada, K. Manabe and S. Kobayashi, J. Am.
Chem. Soc., 2004, 126, 12236; (b) S. Kobayashi, T. Ogino,
H. Shimizu, S. Ishikawa, T. Hamada and K. Manabe, Org. Lett.,
2005, 7, 4729; (c) M. Kokubo, C. Ogawa and S. Kobayashi,
Angew. Chem., Int. Ed., 2008, 47, 6909. For early work, see also:
(d) N. Ozawa, M. Wadamoto, K. Ishihara and H. Yamamoto,
Synlett, 2003, 2219.
7 Recent reviews on bifunctional asymmetric metal catalysis:
(a) M. Shibasaki, S. Matsunaga and N. Kumagai, Synlett, 2008,
1583; (b) S. Matsunaga and M. Shibasaki, Bull. Chem. Soc. Jpn.,
2008, 81, 60. For selected examples of chiral catalysts for direct
aldol reactions developed in our group, see: (c) N. Yoshikawa,
Y. M. A. Yamada, J. Das, H. Sasai and M. Shibasaki, J. Am.
Chem. Soc., 1999, 121, 4168; (d) N. Kumagai, S. Matsunaga,
T. Kinoshita, S. Harada, S. Okada, S. Sakamoto, K. Yamaguchi
and M. Shibasaki, J. Am. Chem. Soc., 2003, 125, 2169 and
references therein.
8 Ni2-1 catalyst: (a) Z. Chen, H. Morimoto, S. Matsunaga and
M. Shibasaki, J. Am. Chem. Soc., 2008, 130, 2170; (b) Z.
Chen, K. Yakura, S. Matsunaga and M. Shibasaki, Org.
Lett., 2008, 10, 3239; (c) Y. Xu, G. Lu, S. Matsunaga and
M. Shibasaki, Angew. Chem., Int. Ed., 2009, 48, 3353;
(d) Y. Kato, Z. Chen, S. Matsunaga and M. Shibasaki, Synlett,
2009, 1635.
9 Co2(OAc)2-1 catalyst: Z. Chen, M. Furutachi, Y. Kato,
S. Matsunaga and M. Shibasaki, Angew. Chem., Int. Ed., 2009,
48, 2218.
In summary, we developed a homodinuclear Ni2-Schiff
base-catalyzed enantioselective hydroxymethylation of b-keto
esters. The reaction proceeded with 0.1–1 mol% catalyst, and
hydroxymethylated products were obtained in 66–94% ee and
22–94% yield (TON = up to 940). Further trials to expand the
nucleophile scope are ongoing.
10 Mn2(OAc)2-1 catalyst: Y. Kato, M. Furutachi, Z. Chen,
H. Mitsunuma, S. Matsunaga and M. Shibasaki, J. Am. Chem.
Soc., 2009, 131, 9168.
11 Heterobimetallic transition metal–rare earth metal Schiff base
catalysts: (a) S. Handa, V. Gnanadesikan, S. Matsunaga and
M. Shibasaki, J. Am. Chem. Soc., 2007, 129, 4900; (b) S. Handa,
K. Nagawa, Y. Sohtome, S. Matsunaga and M. Shibasaki, Angew.
Chem., Int. Ed., 2008, 47, 3230; (c) H. Mihara, Y. Xu,
N. E. Shepherd, S. Matsunaga and M. Shibasaki, J. Am. Chem.
Soc., 2009, 131, 8384.
This work was supported by Grant-in-Aid for Scientific
Research (S), for Scientific Research on Priority Areas
(No. 20037010, Chemistry of Concerto Catalysis for SM),
and for Young Scientists (A) from JSPS and MEXT.
12 For selected examples of related bifunctional bimetallic Schiff base
complexes in asymmetric catalysis, see: (a) V. Annamalai,
E. F. DiMauro, P. J. Carroll and M. C. Kozlowski, J. Org. Chem.,
2003, 68, 1973 and references therein; (b) G. M. Sammis, H. Danjo
and E. N. Jacobsen, J. Am. Chem. Soc., 2004, 126, 9928;
(c) M. Yang, C. Zhu, F. Yuan, Y. Huang and Y. Pan, Org. Lett.,
2005, 7, 1927; (d) J. Gao, F. R. Woolley and R. A. Zingaro, Org.
Biomol. Chem., 2005, 3, 2126; (e) W. Li, S. S. Thakur, S.-W. Chen,
C.-K. Shin, R. B. Kawthekar and G.-J. Kim, Tetrahedron Lett.,
2006, 47, 3453; (f) W. Hirahata, R. M. Thomas, E. B. Lobkovsky
and G. W. Coates, J. Am. Chem. Soc., 2008, 130, 17658. For
related early studies with dinuclear Ni2-Schiff base complexes as
epoxidation catalysts, see also: (g) T. Oda, R. Irie, T. Katsuki and
H. Okawa, Synlett, 1992, 641.
Notes and references
1 For
a general review on asymmetric aldol reactions, see:
(a) L. M. Geary and P. G. Hultin, Tetrahedron: Asymmetry,
2009, 20, 131; (b) Modern Aldol Reactions, ed. R. Mahrwald,
Wiley-VCH, Weinheim, 2004.
2 Reviews on direct catalytic asymmetric aldol reactions:
(a) B. Alcaide and P. Almendros, Eur. J. Org. Chem., 2002,
1595. With organocatalysts, see: (b) S. Mukherjee, J. W. Yang,
S. Hoffmann and B. List, Chem. Rev., 2007, 107, 5471; (c) W. Notz,
F. Tanaka and C. F. Barbas, III, Acc. Chem. Res., 2004, 37, 580.
3 With organocatalysts: (a) H. Torii, M. Nakadai, K. Ishihara,
S. Saito and H. Yamamoto, Angew. Chem., Int. Ed., 2004, 43,
1983; (b) J. Casas, H. Sunden and A. Cordova, Tetrahedron Lett.,
13 The absolute configuration of 3a was determined by comparing the
sign of optical rotation with literature data in ref. 5.
ꢀc
This journal is The Royal Society of Chemistry 2009
5140 | Chem. Commun., 2009, 5138–5140