and pigments,8 electrical conductors,9 ambipolar field effect
transistors,10 solar cells,11 and nonlinear optics.12
To prepare materials with high electrochemical amphot-
ericity and long wavelength absorption, one strategy is to
construct large π-conjugated systems by (i) increasing the
quinoidal character, (ii) increasing the rigidification of the
π-system into a nearly planar conformation, and (iii)
introducing electron-donating and electron-accepting moieties
along the conjugated chain.13 Polycyclic aromatic hydrocar-
bons (PAHs) with large π-conjugation and rigid planar
structure have proven to be not only exciting objects for
structural chemists but also important opto-electronic materi-
als for material scientists due to their many potential
applications for organic electronic devices.14 Quinoidal PAHs
are expected to be another type of interesting material with
intriguing properties. However, to the best of our knowledge,
there are few reports about design and synthesis of soluble
and stable quinoidal PAHs with electrochemical amphot-
ericity. Some quinones of active PAHs such as oligoacenes
are known, but the quinones of larger π-conjugated PAHs
are usually insoluble.15
Our recent goal is to prepare soluble and stable NIR dyes
by using zigzag edged nanographenes such as periacenes as
building block which are supposed to have small band gaps.16
Among them, the bisanthene (1, Figure 1) represents an
interesting object with absorption maximum at 662 nm.17
However, bisanthene 1 is a very unstable compound due to
its high-lying HOMO energy level, and thus, attachment of
electron withdrawing groups such as carboximides is neces-
sary to prepare stable bisanthene derivatives with NIR
absorption.18 On the other hand, the bisanthene quinone (2)
Figure 1. Molecular structures of bisanthene (1), bisanthene
quinones (2 and 3), and bisanthracenequinone (4).
was found to be very stable, but it is virtually insoluble in
most organic solvents and difficult to process. Thus, our
objective is to prepare the di-tert-butyl-substituted extended
bisanthenequinone 3 which is supposed to possess larger
π-conjugation along the long axis and better solubility than
the bisanthenequinone 2. Consequently, intense NIR absorp-
tion and electrochemical amphotericity are expected from
compound 3 due to its quinoidal character and large
delocalized structure. For the sake of comparison, an
extended bisanthracenequinone 4 with a twisted structure was
also prepared.
The synthesis of quinones 3 and 4 is outlined in Scheme
1. The bisanthracenequinone 5 and bisanthenequinone 2 were
(8) Fabian, J.; Nakanzumi, H.; Matsuoka, M. Chem. ReV. 1992, 92,
1197–1226.
Scheme 1. Synthetic Route of Compounds 3 and 4
(9) (a) Ferraris, J. P.; Cowan, D. O.; Walatka, V.; Perlstein, J. P. J. Am.
Chem. Soc. 1973, 95, 948–949. (b) Torrance, J. B.; Mayerle, J. J.; Lee,
V. Y.; Bechgard, K. J. Am. Chem. Soc. 1979, 101, 4747–4748. (c) Dumur,
F.; Gautier, N.; Gallego-Planas, N.; Sahin, Y.; Levillain, E.; Mercier, N.;
Hudhomme, P.; Masino, M.; Girlando, A.; Lloveras, V.; Vidal-Gancedo,
J.; Veciana, J.; Rovira, C. J. Org. Chem. 2004, 69, 2164–2177. (d)
Matsumoto, T.; Sugimoto, T.; Noguchi, S. Synth. Met. 2003, 135, 571–
572.
(10) (a) Pappenfus, T. M.; Chesterfield, R. J.; Frisbie, C. D.; Mann,
K. R.; Casado, J.; Raff, J. D.; Miller, L. L. J. Am. Chem. Soc. 2002, 124,
4184–4185. (b) Pappenfus, T. M.; Raff, J. D.; Hukkanen, E. J.; Burney,
J. R.; Casado, J.; Drew, S. M.; Miller, L. L.; Mann, K. R. J. Org. Chem.
2002, 67, 6015–6024. (c) Chesterfield, R. J.; Newman, C. R.; Pappenfus,
T. M.; Ewbank, P. C.; Haukaas, M. H.; Mann, K. R.; Miller, L. L.; Frisbie,
C. D. AdV. Mater. 2003, 15, 1278–1282.
(11) (a) Tamizhmani, G.; Dodelet, J. P.; Cote, R.; Gravel, D. Chem.
Mater. 1991, 3, 1046–1053. (b) Yu, H. A.; Kaneko, Y.; Yoshimura, S.;
Otani, S. Appl. Phys. Lett. 1996, 68, 547–549.
(12) Higuchi, H.; Nakayama, T.; Koyama, H.; Ojima, J.; Wada, T.;
Sasabe, H. Bull. Chem. Soc. Jpn. 1995, 68, 2363–2377.
(13) Roncali, J. Chem. ReV. 1997, 97, 173–205, and references therein.
(14) (a) Watson, M. D.; Fechtenko¨tter, A.; Mu¨llen, K. Chem. ReV. 2001,
101, 1267–1300. (b) Wu, J.; Pisula, W.; Mu¨llen, K. Chem. ReV. 2007, 107,
718–747.
(15) (a) Clar, E. Polycyclic Hydrocarbons; Academic Press: London,
1964; Vol. 2. (b) Koch, W.; Saito, T.; Yoshida, Z. Tetrahedron 1972, 28,
3191–3201. (c) Mazur, Y.; Bock, H.; Lavie, D. Can. Pat. Appl. 2,029,993,
1991. (d) Clar, E. J. Chem. Soc. 1949, 2013–2016.
(16) (a) Jiang, D.-E.; Sumpter, B. G.; Dai, S. J. Chem. Phys. 2007, 127,
124703. (b) Jiang, D.-E.; Dai, S. Chem. Phys. Lett. 2008, 466, 72–75.
(17) (a) Arabei, S. M.; Pavich, T. A. J. Appl. Spectrosc. 2000, 67, 236–
244. (b) Kuroda, H. J. Chem. Soc. 1960, 1856–1857. (c) Clar, E. Chem.
Ber. 1948, 81, 52–63.
first prepared according to the literature.17 Reaction of 5 with
the lithium reagent of (4-bromo-2,6-di-tert-butylphenoxy)t-
(18) Yao, J.; Chi, C.; Wu, J.; Loh, K. Chem.sEur. J. 2009, 15, 9299–
9302.
Org. Lett., Vol. 11, No. 21, 2009
4855