Yue et al.
JOCNote
SCHEME 1. A Chiral Al-Organophosphate-Catalyzed Enan-
tioselective R-Addition of R-Isocyanoacetamides to Aldehydes
TABLE 1. Reaction of 2a and 3a in the Presence of Phosphoric Acid 4a
and Et2AlCla
entry
4 (equiv)
Et2AlCl (equiv)
T (° C)
yieldb
eec
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
4a (0.2)
4a (0.2)
4a (0.1)
4a (0.24)
4a (0.3)
4a (0.1)
4b (0.1)
4c (0.1)
4d (0.1)
4e (0.1)
4f (0.1)
4g (0.1)
4h (0.1)
4i (0.1)
4j (0.1)
4k (0.1)
4l (0.1)
4j (0.1)
4j (0.1)d
4j (0.1)e
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-40
-40
-40
71
68
89
78
71
68
62
22
23
89
80
91
65
84
82
57
87
81
81
71
0.1
0.1
0.1
0.1
49
-16
40
39
47
12
5
enantiomerically enriched 2-(1-hydroxyalkyl)-5-aminooxa-
zoles (1).9,10 Very recently, Matsunaga, Shibasaki, and co-
workers elegantly demonstrated that a heterobimetallic Ga/
Yb-Schiff base complex was highly efficient in catalyzing the
same reaction providing 5-aminooxazoles (1) in excellent
yields and enantioselectivities.11 As a continuation of our
interests in this reaction, we report herein the development of
a chiral aluminum organophosphate catalyst and its applica-
tion in the synthesis of enantio-enriched 2-(1-hydroxyalkyl)-
5-aminooxazoles (1) by reaction of R-isocyanoacetamides (2)
and aldehydes (3, Scheme 1).
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
22
7
33
48
22
62
51
0
51
59
71
71
Chiral phosphoric acids are now well established as bifunc-
tional organocatalysts, particularly in catalyzing the addition
of nucleophiles to imines/acylimines12,13 However, examples
on the enantioselective activation of aldehydes using this
aGeneral reaction conditions: 2a/3a=1/1, in toluene c=0.1 M. bYield of
chromatographically pure material. cDetermined by chiral HPLC analysis.
dReaction performed at c=0.07 M. eReaction performed at c =0.05 M.
family of Brønsted acids were rare.14 We initially examined
the reaction of R-benzyl-R-isocyanoacetamide (2a) and 2-
methylpropanal (3a)15 in the presence of chiral phosphoric
acids. Although the reaction did proceed, the enantioselectivity
was low (entry 1, Table 1).16 Stimulated by the work of Furono
and Inanaga on the activation of carbonyl compounds by
chiral rare earth organophosphates,17 in conjunction with the
established catalytic power of Al-based chiral Lewis acid on
the above transformation,8,10 the reaction between 2a and 3a
was performed in the presence of phosphoric acid 4 and
Et2AlCl. As shown in Table 1, the ratio of 4a to Et2AlCl
influenced the reaction outcome and the best ee was obtained
when they were mixed in a 2/1 ratio (entry 2). Interestingly,
when 4a and Et2AlCl were used in a 1/1 ratio, the sense of
asymmetric induction was reversed (entry 3). This intriguing
result provided indirect evidence that the Al-organophosphate
complex was indeed an active catalytic species and that the chiral
environment varied depending on the number of phosphate
ligands associated with the metal center. Similar ee was observed
when the loading of Et2AlCl and phosphoric acid was reduced
to 5 and 10 mol %, respectively (entry 6).
(11) Mihara, H.; Xu, Y.; Shepherd, N. E.; Matsunaga, S.; Shibasaki, M.
J. Am. Chem. Soc. 2009, 131, 8384–8385.
(12) Selected examples: (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe,
K. Angew. Chem., Int. Ed. 2004, 43, 1566–1568. (b) Uraguchi, D.; Terada, M.
J. Am. Chem. Soc. 2004, 126, 11804–11805. (c) Rowland, G. B.; Zhang, H.;
Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. C. J. Am.
Chem. Soc. 2005, 127, 15696–15697. (d) Hofmann, S.; Seayad, A. M.; List, B.
Angew. Chem., Int. Ed. 2005, 44, 7424–7427. (e) Rueping, M.; Sugiono, E.;
Azap, C. Angew. Chem., Int. Ed. 2006, 45, 2617–2619. (f ) Storer, R. I.;
Carrera, D. E.; Ni, D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128,
84–86. (g) Chen, X.-H.; Xu, X.-Y.; Liu, H.; Cun, L.-F.; Gong, L.-Z. J. Am.
Chem. Soc. 2006, 128, 14802–14803. (h) Kang, Q.; Zhao, Z.-A.; You, S.-L.
J. Am. Chem. Soc. 2007, 129, 1484–1485. (i) Jia, Y.-X.; Zhong, J.; Zhu, S.-F.;
Zhang, C.-M.; Zhou, Q. L. Angew. Chem., Int. Ed. 2007, 46, 5565–5567. ( j)
Wanner, M. J.; van der Haas, R. N. S.; de Cuba, K. R.; van Maarseveen,
J. H.; Hiemstra, H. Angew. Chem., Int. Ed. 2007, 46, 7485–7487. (k) Sickert,
M.; Schneider, C. Angew. Chem., Int. Ed. 2008, 47, 3631–3634. (l) Baudequin,
C.; Zamfir, A.; Tsogoeva, S. B. Chem. Commun. 2008, 4637–4639. (m)
Enders, D.; Narine, A. A.; Toulgoat, F.; Bisschops, T. Angew. Chem., Int.
Ed. 2008, 47, 5661–5665. (n) Xu, S.; Wang, Z; Zhang, X.; Zhang, X.; Ding, K.
Angew. Chem., Int. Ed. 2008, 47, 2840–2843. (o) Jiang, J.; Yu, J.; Sun, X.-X.;
Rao, Q.-Q.; Gong, L.-Z. Angew. Chem., Int. Ed. 2008, 47, 2458–2462. (p)
Cheng, X.; Goddard, R.; Buth, G.; List, B. Angew. Chem., Int. Ed. 2008, 47,
5079–5081. (q) Guo, Q.-S.; Du, D.-M.; Xu, J. Angew. Chem., Int. Ed. 2008,
47, 759. (r) Rueping, M.; Antonchick, A. P.; Sugiono, E.; Grenader, K.
Angew. Chem., Int. Ed. 2009, 48, 908–910. (s) Liu, H.; Dagousset, G.;
Masson, G.; Zhu, J. J. Am. Chem. Soc. 2009, 131, 4598–4599. (t) Terada,
M.; Machioka, K.; Sorimachi, K. Angew. Chem., Int. Ed. 2009, 48, 2553–
2556. (u) Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445–2447.
(13) (a) Akiyama, T. Chem. Rev. 2007, 107, 5744–5758. (b) Terada, M.
Chem. Commun. 2008, 4097–4112. (c) Doyle, A. G.; Jacobsen, E. N. Chem.
Rev. 2007, 107, 5713–5743.
Different phosphoric acids (Figure 1) were next screened
under the following conditions: 4 (0.1 equiv), Et2AlCl (0.05
(14) (a) Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128,
9626–9627. (b) Rueping, M.; Ieawsuwan, W.; Antonchick, A. P.; Nachtsheim, B.
J. Angew. Chem., Int. Ed. 2007, 46, 2097–2100. (c) Rueping, M.; Nachtsheim,
B. J.; Moreth, S. A.; Bolte, M. Angew. Chem., Int. Ed. 2008, 47, 593–596.
(d) Terada, M.; Soga, K.; Momiyama, N. Angew. Chem., Int. Ed. 2008, 47,
4122–4125. (e) Garcia-Garcia, P.; Lay, F.; Garcia-Garcia, P.; Rabalakos, C.;
List, B. Angew. Chem., Int. Ed. 2009, 48, 4363–4366.
(16) For phosphoric acids- and phosphinic acids-catalyzed Ugi-type
reactions, see: (a) Pan, S. C.; List, B. Angew. Chem., Int. Ed. 2008, 47,
3622–3625. (b) Yue, T.; Wang, M.-X.; Wang, D.-X.; Masson, G.; Zhu, J.
Angew. Chem., Int. Ed. 2009, 48, 6717–6721.
(17) (a) Jin, X. L.; Sugihara, H.; Daikai, K.; Tateishi, H.; Jin, Y. Z.;
Furono, H.; Inanaga, J. Tetrahedron 2002, 58, 8321–8329. (b) Furono, H.;
Hayano, T.; Kambara, T.; Sugimoto, Y.; Hanamoto, T.; Tanaka, Y.; Jin,
Y. Z.; Kagawa, T.; Inanaga, J. Tetrahedron 2003, 59, 10509–10523. (c)
Suzuki, S.; Furono, H.; Yokoyama, Y.; Inanaga, J. Tetrahedron: Asymmetry
2006, 17, 504–507.
(15) The R-isocyanoacetamides are easily available, see: (a) Fayol, A.;
ꢀ
Housseman, C.; Sun, X.; Janvier, P.; Bienayme, H.; Zhu, J. Synthesis 2005,
161–165. (b) Housseman, C.; Zhu, J. Synlett 2006, 1777–1779. (c) Domling,
€
A.; Beck, B.; Fuchs, T.; Yazbak, A. J. Comb. Chem. 2006, 8, 872–880.
J. Org. Chem. Vol. 74, No. 21, 2009 8397