their application in synthesis.6,9,10 These heterocycles un-
dergo efficient cycloadditions as the diene component to
afford functionally rich, bridged bicyclic lactone cycload-
ducts. Halogen-substituted pyran-2-ones are particularly
interesting and useful since they undergo cycloadditions with
a very wide range of dienophiles of different electron
demand, albeit with modest regio- and stereocontrol.5
However, significantly improved regio- and stereoselectivity
is observed if the pyran-2-one substituent electronically
complements that of the dienophile.3 We have also demon-
strated that manipulation of these cycloadducts affords a rapid
synthetic access to heavily substituted six-membered rings
and, in particular, individual carba- and azasugar moieties.
On the basis of this earlier work, we envisaged that
cycloadditions of a suitably substituted pyran-2-one to a
vinylated sugar would be an advantageous means of access-
ing pseudodisaccharides. First, the Diels-Alder cycloadducts
are functionally rich and, as we have already demonstrated,
are ideal springboards for the synthesis of the carbasugar
component of a pseudodisaccharide. In addition, cycload-
ditions can benefit from the induction of chirality by the
enantiopure dienophile to afford the required pseudodisac-
charides as single enantiomers.
Scheme 2. Cycloaddition of 2-Carbomethoxy-2(H)-pyran-2-one
to 1,2:5,6-Di-O-isopropylideneglucofuranose
unreacted pyrone. Following chromatographic separation on
silica gel, the endo configuration for cycloadducts 3a and
3b and the exo configuration for cycloadduct 3c were
established by analysis of the coupling constants in the 400
We prepared vinylated glucofuranose 111 from the corre-
sponding glucofuranose in 88% yield, via a palladium-
catalyzed trans-etherification. Cycloaddition with commer-
cially available 2-carbomethoxy-2(H)-pyran-2-one 2 was
carried out in a sealed tube in methylene chloride at 65 °C
over 7 days using 2 equiv of the dienophile (Scheme 2).
Analysis of the crude reaction mixture by NMR revealed it
to contain a mixture of three cycloadducts in the ratio of
3.4(3a):2.0(3b):0.1(3c) as well as a small quantity of
1
MHz H NMR in accordance to the extensive literature
precedent.3a,5c
At this stage, the absolute configuration of the minor endo
cycloadduct 3b was established unequivocally by X-ray
crystallography as (1R,5R) (see Supporting Information). The
major endo cycloadduct 3a was an oil; however, as can be
seen later, the absolute configuration of this isomer was
established retrospectively as (1S,5S) on the basis of X-ray
crystallography on a derivative (Scheme 3). To rationalize
this modest diastereofacial selectivity, we must assume that
(3) (a) Afarinkia, K.; Nelson, T. D.; Vinader, M. V.; Posner, G. H.
Tetrahedron 1992, 48, 9111–9171. (b) Posner, G. H.; Nelson, T. D.; Kinter,
C. M.; Johnson, N. J. Org. Chem. 1992, 57, 4083–4088. (c) Posner, G. H.;
Switzer, C. J. Org. Chem. 1987, 52, 1642–1644
(4) (a) Afarinkia, K.; Berna-Canovas, J. Tetrahedron Lett. 2000, 41,
4955–4958. (b) Afarinkia, K.; Bearpark, M.; Ndibwami, A. J. Org. Chem.
.
2005, 70, 1122–1133, and references therein
.
(5) (a) Afarinkia, K.; Ndibwami, A. Synlett 2007, 1940–1943. (b)
Afarinkia, K.; Bahar, A.; Neuss, J. Synlett 2007, 1375–1378. (c) Afarinkia,
K.; Bahar, A.; Neuss, J. Synlett 2003, 2341–2344. (d) Afarinkia, K.;
Scheme 3. Transformation of Cycloadduct 3a to
Pseudodisaccharide 8
Mahmood, F. Tetrahedron 1999, 55, 3129–3140
.
(6) (a) Marko´, I. E.; Chelle´-Regnaut, I.; Leroy, B.; Warriner, S. L.
Tetrahedron Lett. 1997, 38, 4269–4272. (b) Marko´, I. E.; Evans, G. R.
Synlett 1994, 431–433. (c) Marko´, I. E.; Seres, P.; Evans, G. R.; Declercq,
J. P. Tetrahedron 1994, 50, 4557–574, and references therein
.
(7) (a) Posner, G. H.; Vinader, M. V.; Afarinkia, K. J. Org. Chem. 1992,
57, 4088–4097. (b) Afarinkia, K.; Mahmood, M. Tetrahedron Lett. 1998,
39, 493–496
.
(8) (a) Afarinkia, K.; Bahar, A.; Bearpark, M.; Garcia-Ramos, Y.;
Ruggerio, A.; Neuss, J.; Vyas, M. J. Org. Chem. 2005, 70, 9529–9537,
and references therein
.
(9) (a) Posner, G. H.; Nelson, T. D. J. Org. Chem. 1992, 57, 4339–
4341. (b) Posner, G. H.; Nelson, T. D. Tetrahedron 1990, 46, 4573–4586.
(c) Posner, G. H.; Haces, A.; Harrison, W.; Kinter, C. M. J. Org. Chem.
1987, 52, 4836–4841. (d) Posner, G. H.; Wettlaufer, D. G. J. Am. Chem.
Soc. 1986, 108, 7373–7377
.
(10) (a) Liao, J.-H.; Maulide, N.; Augustyns, B.; Marko´, I. E. Org.
Biomol. Chem. 2006, 1464. (b) Augustyns, B.; Maulide, N.; Marko´, I. E.
Tetrahedron Lett. 2005, 46, 3895–3899. (c) Nicolaou, K. C.; Yang, Z.; Liu,
J. J.; Ueno, H.; Nantermet, P. G.; Guy, R. K.; Claiborne, C. F.; Renaud, J.;
Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J. Nature 1994, 367, 630–
634. (d) Marko´, I. E.; Seres, P.; Evans, G. R.; Swarbrick, T. M. Tetrahedron
Lett. 1993, 34, 7305–7308. (e) Jung, M. E.; Head, D. B. Bull. Chim. Fr.
1990, 127, 830–834
.
(11) (a) Handerson, S.; Schal, M. Org. Lett. 2002, 4, 407–409. (b) Black,
W. A. P.; Dewar, E. T.; Rutherford, D. J. Chem. Soc. 1963, 4433–4439.
Org. Lett., Vol. 11, No. 22, 2009
5183