ORGANIC
LETTERS
2009
Vol. 11, No. 21
5026-5028
Highly Regioselective N-2 Arylation of
4,5-Dibromo-1,2,3-triazole: Efficient
Synthesis of 2-Aryltriazoles
Xiao-jun Wang,* Li Zhang, Heewon Lee, Nizar Haddad,
Dhileepkumar Krishnamurthy, and Chris H. Senanayake
Department of Chemical DeVelopment, Boehringer Ingelheim Pharmaceuticals Inc.,
Ridgefield, Connecticut 06877
Received August 26, 2009
ABSTRACT
Reaction of 4,5-dibromo-1,2,3-triazole with electron-deficient aromatic halides in the presence of potassium carbonate in DMF produces the
corresponding 2-aryl-4,5-dibromotriazoles with high regioselectivity. Subsequent debromination of these triazoles by hydrogenation furnishes
2-aryltriazoles in excellent yields. Overall, this two-step process provides an efficient access to 2-aryl-1,2,3-triazoles.
1,2,3-Triazoles have broad applications in chemical indus-
tries, medicinal chemistry, and biological sciences.1
approach to 2-aryltriazoles by condensation of arylhydrazines
and R-hydroxyketones requires quite specific arylhydrazines,
which limits its broader utility.4
A
number of synthetic methods have been developed to prepare
these heterocycles. Whereas both thermal and Cu(I)-catalyzed
condensations of alkynes and azides provide an excellent
method for the synthesis of N-1 substituted triazoles,2 the
synthesis of N-2 substituted triazoles remains a challenge,3
especially for 4,5-unsubstituted substrates. The current main
We recently required access to N-2 aryl-substituted triazole
derivatives such as 1A (Scheme 1) and were interested in
developing a regioselective N-2 arylation process. However,
N-1 arylation/alkylation to 1B was well documented to be
the main course for direct nucleophilic substitution with
triazole 1 (Scheme 1). From a simple statistical perspective,
N-2 arylation/alkylation should comprise about one-third of
the product mixture, since there are one N-2 nitrogen and
two terminal nitrogens available for reaction. Recently,
Shi3c,d reported a highly regioselective N-2 arylation of 4,5-
disubstituted 1,2,3-triazoles where steric hindrance of a 4,5-
disubstitution pattern prevented terminal N-arylation.5 In this
(1) (a) Wamhoff, H. In ComprehensiVe Heterocyclic Chemistry; Katritz-
ky, A. R., Rees, C. W., Eds.; Pergman: Oxford, UK, 1984; Vol. 5, p 669.
(b) Dehne, H. In Methoden der Organischen Chemie (Houben-Weyl);
Schumann, E., Ed.; Thieme: Stuttgart, Germany, 1994; Vol. E8d, p 305.
(c) Kolb, H. C.; Sharpless, K. B. Drug DiscoVery Today 2003, 8, 1128.
(2) (a) Huisgen, R. 1,3-Dipolar Cycloaddition Chemistry; Padwa, A.,
Ed.; Wiley: New York, 1984. (b) Kolb, H. C.; Fin, M. G.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2001, 40, 2004. (c) Rostovtsev, V. V.; Green, L. G.;
Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596. (d)
Wu, P.; Fokin, V. V. Aldrichim. Acta 2007, 40, 7.
(4) Tang, W.; Hu, Y. Synth. Commun. 2006, 36, 2461.
(3) For recent development on selective synthesis of N-2 substututed
triazoles, see: (a) Kalisiak, J.; Sharpless, K. B.; Fokin, V. V. Org. Lett.
2008, 10, 3171. (b) Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. J. Am.
Chem. Soc. 2003, 125, 7786. (c) Liu, Y.; Yan, W.; Chen, Y.; Petersen,
J. L.; Shi, X. Org. Lett. 2008, 10, 5389. (d) Chen, Y.; Liu, Y.; Petersen,
J. L.; Shi, X. Chem. Commun. 2008, 3254.
(5) (a) Lacerda, P. S. S.; Silva, A. M. G.; Tome, A. C.; Neves, M.;
Silva, A. M. S.; Cavaleiro, J. A. S.; Llamas-Saiz, A. L. Angew. Chem., Int.
Ed. 2006, 45, 5487. (b) Revesz, L.; Di Padova, F. E.; Buhl, T.; Feifel, R.;
Gram, H.; Hiestand, P.; Manning, U.; Wolf, R.; Zimmerlin, A. G. Bioorg.
Med. Chem. Lett. 2002, 12, 2109. (c) Kim, D. K.; Kim, J.; Park, H. J. Bioorg.
Med. Chem. Lett. 2004, 14, 2405.
10.1021/ol9019875 CCC: $40.75
Published on Web 10/08/2009
2009 American Chemical Society