26
D. G. Barrett et al. / Bioorg. Med. Chem. Lett. 17 (2007) 22–27
exploration of this hybrid ketone series was not
undertaken.
ketone 3c and the starting ketone 1 occupy very similar
space reflective of their similar potencies.
Similar to the ketoamide series, these hybrid ketones
showed moderate to good selectivity versus cathepsin
L (e.g., analogs 3f, 3g, and 3m P100-fold selective for
cathepsin K), as shown in Table 2. In contrast, these hy-
brid ketones were substantially less selective than the
corresponding ketoamides against cathepsin B (only
ꢀ10-fold selective for cathepsin K).5 Their selectivity
versus cathepsin S was poor.
In summary, this report describes the design of a novel
hybrid ketone series of cathepsin K inhibitors based
on two previously disclosed cathepsin K inhibitor series.
Significant enhancements in oral exposure were realized
by eliminating two amide bonds and incorporating a
constrained P3 peptidomimetic fragment, while main-
taining the low nanomolar inhibitory activity of the ori-
ginal ketone versus cathepsin K. Further efforts to
improve the selectivity of this series versus other cathep-
sins via modifications to the P3 residue may prove
worthwhile.
These ketones exhibited good to excellent permeability
in an in vitro Madin-Darby canine kidney (MDCK) cell
permeation assay (PAPP = 68–340 nm/s), as shown in
Table 3.15 Furthermore, their solubility in fasted state-
simulated intestinal fluid (FS-SIF = 0.028–0.097 mg/
mL) at pH 6.8 was only slightly lower than that of
ketoamide 2 (FS-SIF 0.11mg/mL), which exhibited
good oral exposure.16 Encouraged by these predictors
of oral bioavailability, the iv and po pharmacokinetics
of several analogs were profiled in male Han Wistar rats.
As shown in Table 3, the compounds exhibited short ter-
minal elimination half-lives (t1/2 = 24–120 min) and
moderate to high clearances (Cl = 16–82 mL/min/kg),
similar to starting ketone 1 (t1/2 = 33 min, Cl = 33 mL/
min/kg). In contrast, the steady-state volumes of distri-
bution (VSS = 460–1800 mL/kg) on average resembled
the more moderate volume of starting ketoamide 2
(VSS = 1600 mL/kg) than ketone 1 (VSS = 710 mL/kg).
Encouragingly, the oral bioavailabilities (F = 20–100%)
of the hybrid ketones were all significantly better than
that of the starting ketone 1 (F = 3.2%), with the 4-pyr-
idyl derivative 3h (F = 100%) exhibiting similar oral and
intravenous exposure.
Acknowledgments
The authors thank Robert Marquis and Dennis
Yamashita for helpful discussions.
References and notes
1. Turk, B.; Turk, D.; Salvesen, G. S. Med. Chem. Rev.-
Online 2005, 2, 283.
2. Deaton, D. N.; Kumar, S. Prog. Med. Chem. 2004, 42,
245.
3. Marquis, R. W.; Ru, Y.; LoCastro, S. M.; Zeng, J.;
Yamashita, D. S.; Oh, H.-J.; Erhard, K. F.; Davis, L. D.;
Tomaszek, T. A.; Tew, D.; Salyers, K.; Proksch, J.; Ward,
K.; Smith, B.; Levy, M.; Cummings, M. D.; Haltiwanger,
R. C.; Trescher, G.; Wang, B.; Hemling, M. E.; Quinn, C.
J.; Cheng, H. Y.; Lin, F.; Smith, W. W.; Janson, C. A.;
Zhao, B.; McQueney, M. S.; D’Alessio, K.; Lee, C.-P.;
Marzulli, A.; Dodds, R. A.; Blake, S.; Hwang, S.-M.;
James, I. E.; Gress, C. J.; Bradley, B. R.; Lark, M. W.;
Gowen, M.; Veber, D. F. J. Med. Chem. 2001, 44, 1380.
4. Marquis, R. W.; Ward, K. W.; Roethke, T.; Smith, B. R.;
Ru, Y.; Yamashita, D. S.; Tomaszek, T. A.; Gorycki, P.
D.; Cheng, H. Y.; James, I. E.; Stroup, G. B.; Lark, M.
W.; Gowen, M.; Veber, D. F. Mol. Pharm. 2004, 1, 97.
5. Barrett, D. G.; Boncek, V. M.; Catalano, J. G.; Deaton,
D. N.; Hassell, A. M.; Jurgensen, C. H.; Long, S. T.;
McFadyen, R. B.; Miller, A. B.; Miller, L. R.; Payne, J.
A.; Ray, J. A.; Samano, V.; Shewchuk, L. M.; Tavares, F.
X.; Wells-Knecht, K. J.; Willard, D. H.; Wright, L. L.;
Zhou, H.-Q. Q. Bioorg. Med. Chem. Lett. 2005, 15, 3540.
6. Lambert, M. H. In Practical Application of Computer-
Aided Drug Design; Charifson, P. S., Ed.; Marcel Dekker,
NY: New York, 1997; p 243.
7. DesJarlais, R. L.; Yamashita, D. S.; Oh, H.-J.; Uzinskas,
I. N.; Erhard, K. F.; Allen, A. C.; Haltiwanger, R. C.;
Zhao, B.; Smith, W. W.; Abdel-Meguid, S. S.; D’Alessio,
K.; Janson, C. A.; McQueney, M. S.; Tomaszek, T. A.;
Levy, M. A.; Veber, D. F. J. Am. Chem. Soc. 1998, 120,
9114.
8. Jones, D. M.; Atrash, B.; Teger-Nilsson, A.-C.; Gyzander,
E.; Deinum, J.; Szelke, M. Lett. Pept. Sci. 1995, 2, 147.
9. Whitman, D. B.; Askew, B. C.; Duong, L. T.; Fernandez-
Metzler, C.; Halczenko, W.; Hartman, G. D.; Hutchinson,
J. H.; Leu, C.-T.; Prueksaritanont, T.; Rodan, G. A.;
Rodan, S. B.; Duggan, M. E. Bioorg. Med. Chem. Lett.
2004, 14, 4411.
A model of the hybrid ketone 3c docked into the active
site of cathepsin K with the active site thiol of 25Cys
forming a covalent hemithioketal intermediate with the
ketone group of the inhibitor is shown in Figure 2. The
model of starting ketone 1 is included for comparison.
This model provides insight into the SAR of the hybrid
ketone series. The hemithioketal hydroxyl of ketone 3c
is stabilized by two hydrogen bonds to the side chain
of 19Gln, and the backbone amide of 25Cys, consistent
with other ketone co-crystal structures (e.g., 1BGO).
One face of the P1 n-butyl group of the norleucine-de-
rived inhibitor forms van der Waals interactions with
the S1 wall composed of 23Gly, 24Ser, 64Gly, and 65Gly.
Moreover, the carbamate NH and the carbamate car-
bonyl of the inhibitor are stabilized by two additional
hydrogen bonds between 161Asn and 66Gly in the peptide
backbone recognition site of the enzyme. Furthermore,
the P2 tert-butyl substituent of 3c forms significant
lipophilic interactions with the deep S2 pocket composed
of 67Tyr, 68Met, 134Ala, 163Ala, and 209Leu. Additional
interactions between the P3 phenyl moiety and the active
site trough as well as the S3 subsite formed by 60Asn,
61Asp, 65Gly, 66Gly, and 67Tyr further enhance binding
en0ergy. Finally, the pyridyl sulfonamide occupies the
S1 subsite with one of its sulfone oxygens forming a
10. Catalano, J. G.; Deaton, D. N.; Furfine, E. S.; Hassell, A.
M.; McFadyen, R. B.; Miller, A. B.; Miller, L. R.;
hydrogen bond with the indole NH of 184Trp. The hybrid