M. L. Brown et al. / Bioorg. Med. Chem. 17 (2009) 7056–7063
7063
4.30. General procedure F: trifluoromethyl ketone formation
J = 3.3 Hz, 2H), 1.37 (t, J = 3.3 Hz, 2H), 1.26 (d, J = 6.6 Hz, 12H);
1
13C NMR: d 169.6, 147.9, 134.5, 133.4, 124.0 (q, JCF = 171 Hz),
2
A solution of iodide (1.0 equiv) in dry Et2O was cooled to À78 °C
and n-BuLi (1.6 M in hexanes, 2.0 equiv) was added dropwise. The
reaction mixture was slowly allowed to warm to 0 °C over 2 h and
then cooled back down to À78 °C. A solution of 6 (1.3 equiv) in dry
Et2O (5 mL) was slowly added dropwise over 30 min. The reaction
was allowed to warm to 0 °C and then quenched with satd aq
NH4Cl. The Et2O layer was washed with satd aq NH4Cl (10 mL),
brine (30 mL), dried over MgSO4, filtered and concentrated. Purifi-
cation was performed on a flash column (20:1 hexanes/EtOAc), col-
lecting all fractions with a component of Rf = 0.50 to yield the pure
ketone.
123.3, 96.1 (q, JCF = 21 Hz) 35.6, 32.8, 29.0, 28.9, 27.2, 22.8; 19F
NMR: d À77.32; EI-MS: 375.4 m/z. Anal. Calcd for C19H28F3NO3: C,
60.79; H, 7.52; N, 3.73. Found: C, 60.80; H, 7.42; N, 3.43.
4.36. 2-Hydroxy-8-(4-hydroxy-3,5-diisopropyl-phenyl)-2-
trifluoromethyl-octanoic acid amide (5)
General procedure
B was employed with 18b (24 mg,
0.056 mmol) and concd HCl (2.0 mL). The hydroxyamide was ob-
tained as a white solid (20.5 mg, 91% yield). mp = 105–107 °C; 1H
NMR: d 6.84 (s, 2H), 6.09 (d, J = 4.6 Hz, 2H), 4.68 (s, 1H), 4.05 (s,
1H), 3.14 (septet, J = 6.9 Hz, 2H), 2.52 (t, J = 8.4 Hz, 2H), 1.90 (t,
J = 8.4 Hz, 2H), 1.58 (t, J = 3.3 Hz, 2H), 1.37 (t, J = 3.3 Hz, 2H), 1.26
(d, J = 6.6 Hz, 12H); 13C NMR: d 169.6, 147.9, 134.5, 133.4, 124.0
4.31. 6-(3,5-Diisopropyl-4-methoxymethoxy-phenyl)-1,1,1-
trifluoro-hexan-2-one (17a)
1
(q, JCF = 171 Hz), 123.3, 35.6, 32.6, 31.7, 29.7, 29.3, 29.1, 27.2,
22.8, 22.1; 19F NMR: d À77.45; EI-MS: m/z 403.2; HRMS (EI) calcd
for C21H32F3NO3 403.2334, found 403.2328; Anal. Calcd for
C21H32F3NO3: C, 62.51; H, 7.99; N, 3.47. Found: C, 62.61; H, 7.68;
N, 3.17.
General procedure
F was employed with 16a (708 mg,
1.75 mmol), n-BuLi (1.6 M in hexanes, 2.2 mL, 3.6 mmol) and 6
(412 mg, 2.28 mmol). The ketone was obtained as a colorless oil
(306 mg, 66% yield). 1H NMR: d 6.90 (s, 2H), 4.91 (s, 2H), 4.31 (t,
J = 5.1 Hz, 2H), 3.62 (s, 2H), 3.32 (septet, J = 6.9 Hz, 2H), 2.55 (t,
J = 7.5 Hz, 2H), 1.27–1.37 (m, 4H), 1.22 (d, J = 6.9 Hz, 12H); 13C
Acknowledgments
2
NMR: d 167.7 (q, JCF = 30 Hz), 149.6, 141.3, 139.0, 129.8 (q,
1JCF = 156 Hz), 123.8, 100.3, 57.3, 35.9, 31.6, 29.5, 29.4, 26.6, 24.0;
19F NMR: d À67.82; EI-MS: (m/z) 374.1.
The authors would like to thank NIH Grant RO1 CA105435-01
(M.L.B. & M.K.P.) and the Jeffress Trust Fund (M.L.B.) for financial
support. We would like to acknowledge Dr. Jaideep Kapur and Ash-
ley Renick (Dept. Neurology, University of Virginia) for providing
the cultured hippocampal neurons. We would also like to thank
the Cardiovascular Research Center at the University of Virginia
(M.K.P) and the Georgetown Drug Discovery Program (M.L.B.).
4.32. 8-(3,5-Diisopropyl-4-methoxymethoxy-phenyl)-1,1,1-
trifluoro-octan-2-one (17b)
General procedure
F was employed with 16b (330 mg,
0.76 mmol), n-BuLi (1.6 M in hexanes, 1.0 mL, 1.56 mmol) and 6
(109 mg, 0.60 mmol). The ketone was obtained as a colorless oil
(172 mg, 56% yield). 1H NMR: d 6.89 (s, 2H), 4.91 (s, 2H), 3.62 (s,
2H), 3.53 (s, 3H), 3.32 (septet, J = 6.9 Hz, 2H), 2.71 (t, J = 7.2 Hz,
2H), 2.55 (t, J = 8.1 Hz, 2H), 1.64–1.69 (m, 4H), 1.38 (m, 4H), 1.22
References and notes
1. Catterall, W. A. Neuron 2000, 26, 13–25.
2. Goldin, A. L. Annu. Rev. Physiol. 2001, 63, 871–894.
3. Prasad, A.; Worrall, B. B.; Bertram, E. H.; Bleck, T. P. Epilepsia 2001, 42, 380–386.
4. Trapani, Giuseppe; Altomare, Cosimo; Sanna, Enrico; Biggio, Giovanni; Liso,
Gaetano Curr. Med. Chem. 2000, 7, 249–271.
5. Martella, G.; De Persis, C.; Bonsi, P.; Natoli, S.; Cuomo, D.; Bernardi, G.;
Calabresi, P.; Pisani, A. Epilepsia 2005, 46, 624–635.
6. Dong, X.-P.; Xu, T.-L. Anesthesia Analgesia 2002, 95, 907–914.
7. Ratnakumari, L.; Hemmings, H. C. Br. J. Pharmacol. 1996, 119, 1498–1504.
8. Ratnakumari, L.; Hemmings, H. C., Jr. Anesthesiology 1997, 86, 428–439.
9. Ouyang, W.; Wang, G.; Hemmings, H. C. Mol. Pharmacol. 2003, 64, 373–381.
10. Matthew Krasowski, D.; Hong, X.; Hopfinger, A. J.; Neil Harrison, L. J. Med.
Chem. 2002, 45, 3210–3221.
2
(d, J = 6.3 Hz, 12H); 13C NMR: d 191.6 (q, JCF = 36 Hz), 149.7,
1
141.4, 138.6, 123.7, 116.1 (q, JCF = 207 Hz), 100.3, 57.2, 36.3,
35.7, 31.2, 28.9, 28.5, 26.6, 23.9, 22.3; 19F NMR: d À79.09; EI-MS:
(m/z) 402.3.
4.33. 6-(3,5-Diisopropyl-4-methoxymethoxy-phenyl)-2-
hydroxy-2-trifluoromethyl-hexanenitrile (18a)
11. Krasowski, M. D.; Hong, X.; Hopfinger, A. J.; Harrison, N. L.; Cooke, A.;
Anderson, A.; Buchanan, K.; Byford, A.; Gemmell, D.; Hamilton, N.; McPhail, P.;
Miller, S.; Sundaram, H.; Vijn, P. Bioorg. Med. Chem. Lett. 2001, 11, 927–930.
12. Brown, M. L.; Van Dyke, C. C.; Brown, G. B.; Brouillette, W. J. J. Med. Chem. 1999,
42, 1537–1545.
General procedure
A was employed with 17a (200 mg,
0.53 mmol), TMSCN (0.18 mL, 1.34 mmol), KCN (5 mg) and 18-
crown-6 (5 mg). The cyanohydrin was obtained as a yellow oil
(212 mg, 99% yield), and was used without further purification.
13. Prout, K.; Fail, J.; Jones, R. M.; Warner, R. E.; Emmett, J. C. J. Chem. Soc. Perkin.
Trans. 2: Phys. Org. Chem. 1988, 3, 265–284.
14. Clark, M. D.; Cramer, R. D., III; Opdenbosch, N. V. J. Comput. Chem. 1989, 10,
982–1012.
4.34. 8-(3,5-Diisopropyl-4-methoxymethoxy-phenyl)-2-
hydroxy-2-trifluoromethyl-octanenitrile (18b)
15. Choudhury-Mukherjee, I.; Schenck, H. A.; Cechova, S.; Pajewski, T. N.; Kapur, J.;
Ellena, J.; Cafiso, D. S.; Brown, M. L. J. Med. Chem. 2003, 46, 2494–2501.
16. Wheatley, W. B.; Holdrege, C. T. J. Org. Chem. 1957, 23, 568–571.
17. Chiellini, G.; Nguyen, H.; Yoshihara, H. A.; Scanlan, T. I. Bioorg. Med. Chem. Lett.
2000, 10, 2607–2611.
18. Nassal, M. Liebigs Ann. Chem. 1983, 1510–1523.
19. Grunewald, G. L.; Brouillette, W. J.; Finney, J. A. Tetrahedron Lett. 1980, 21,
1219–1220.
General procedure
A was employed with 17b (23 mg,
0.057 mmol), TMSCN (0.02 mL, 0.14 mmol), KCN (10 mg) and 18-
crown-6 (10 mg). The cyanohydrin was obtained as a yellow oil
(24 mg, 96% yield), and was used without further purification.
20. Ware, E. Chem. Rev. 1950, 46, 403–470.
4.35. 2-Hydroxy-6-(4-hydroxy-3,5-diisopropyl-phenyl)-2-
trifluoromethyl-hexanoic acid amide (4)
21. Banker, G.; Goslin, K. Nature (London) 1988, 336, 185–186.
22. Brouillette, W. J.; Jestkov, V. P.; Brown, M. L.; Shamim Akhtar, M.; Delorey, T.
M.; Brown, G. B. J. Med. Chem. 1994, 37, 3289–3293.
23. Brown, M. L.; Brown, G. B.; Brouillette, W. J. J. Med. Chem. 1997, 40, 602–607.
24. Irlapati, N. R.; Baldwin, J. E.; Adlington, R. M.; Pritchard, G. J.; Cowley, A. R.
Tetrahedron 2006, 62, 4603–4614.
25. Nystroem, J. E.; McCanna, T. D.; Helquist, P.; Amouroux, R. Synthesis 1988, 56–
58.
General procedure
B was employed with 18a (212 mg,
0.53 mmol) and concd HCl (4.0 mL). The hydroxyamide was ob-
tained as a orange oil (158 mg, 80% yield). mp = 92–94 °C; 1H
NMR: d 6.84 (s, 2H), 6.09 (d, J = 4.6 Hz, 2H), 4.68 (s, 1H), 4.05 (s,
1H), 3.14 (septet, J = 6.9 Hz, 2H), 2.52 (t, J = 8.4 Hz, 2H), 1.58 (t,
26. Suhara, Y.; Oka, S.; Kittaka, A.; Takayama, H.; Waku, K.; Sugiura, T. Bioorg. Med.
Chem. 2007, 15, 854–867.