3958
G.-D. Zhu et al. / Bioorg. Med. Chem. Lett. 18 (2008) 3955–3958
quaternary methylene-amino substituent at the C-2 position of
2000
the benzimidazole. Two optimized inhibitors in this series, 9b
and 9k, displayed an excellent intrinsic potency against PARP-1,
and showed good pharmaceutical properties, including aqueous
solubility and pharmacokinetics across multiple species. In a mur-
ine flank melanoma model in combination with temozolomide,
both compounds significantly potentiated the efficacy of temozol-
omide, without an observable increase in toxicity.
Vehicle
TMZ 50 N=9
9k
TMZ (30/50)
1500
1000
500
9k/
TMZ (10/50)
Acknowledgment
The authors are grateful to the Abbott analytical department for
acquisition of 1H NMR and MS.
References and notes
0
0
5
10
15
20
1. Virág, L.; Szabó, C. Pharmacol. Rev. 2002, 54, 375.
2. Jagtap, P.; Szabó, C. Nat. Rev. Drug Discov. 2005, 4, 421.
Days
TMZ PO QD d5-9
9k PO BID d5-10
3. (a) Munoz-Gamez, J. A.; Martin-Oliva, D.; Aguilar-Quesada, R.; Canuelo, A.;
Nunez, M. I.; Valenzuela, M. T.; Ruiz de Almodovar, J. M.; de Murcia, G.; Oliver,
F. J. Biochem. J. 2005, 386, 119; (b) Tentori, L.; Graziani, G. Pharmacol. Res. 2005,
52, 25; (c) Shirou, S.; Nomura, F.; Tomonaga, T.; Sunaga, M.; Noda, M.; Ebara,
M.; Saisho, H. Oncol. Rep. 2004, 12, 821; (d) Griffin, R. J.; Curtin, N. J.; Newell, D.
R.; Golding, B. T.; Durkacz, B. W.; Calvert, A. H. Biochemie 1995, 77, 408.
4. (a) Plummer, E. R. Curr. Opin. Pharmacol. 2006, 6, 364; (b) Horváth, E. M.; Szabó,
C. Drug News Perspect. 2007, 20, 171; (c) Ratnam, K.; Low, J. A. Clin. Cancer Res.
2007, 13, 1383.
Figure 2. Efficacy of compound 9k in combination with temozolomide in a B16F10
murine melanoma model.12
Table 4
PK summary of compound 9b in different animal speciesa
5. Donawho, C. K.; Luo, Y.; Luo, Y.; Penning, T. D.; Bauch, J. L.; Bouska, J. J.;
Bontcheva-Diaz, V. D.; Cox, B. F.; DeWeese, T. L.; Dillehay, L. E.; Ferguson, D. C.;
Ghoreishi-Haack, N. S.; Grimm, D. R.; Guan, R.; Han, E. K.; Holley-Shanks, R.;
Hristov, B.; Idler, K. B.; Jarvis, K.; Johnson, E. F.; Kleinberg, L. E.; Klinghofer, V.;
Lasko, L. M.; Liu, X.; Marsh, K. C.; McGonigal, T. P.; Meulbroek, J. A.; Olson, A.
M.; Palma, J. P.; Rodriguez, L. E.; Shi, Y.; Stavropoulos, J. A.; Tsurutani, A. C.; Zhu,
G.-D.; Rosenberg, S. H.; Giranda, V. L.; Frost, D. J. Clin. Cancer Res. 2007, 13, 2728.
6. Lapidus, R. G.; Tentori, L.; Graziani, G.; Leonetti, C.; Scarsella, M.; Vergati, M.;
Muzi, A.; Zhang, J. J. Clin. Oncol. 2005, 23, 3136.
7. Calabrese, C. R.; Almassy, R.; Barton, S.; Batey, M. A.; Calvert, A. H.; Canan-Koch,
S.; Durkacz, B. W.; Hostomsky, Z.; Kumpf, R. A.; Kyle, S.; Li, J.; Maegley, K.;
Newell, D. R.; Notarianni, E.; Stratford, I. J.; Skalitsky, D.; Thomas, H. D.; Wang,
L.-Z.; Webber, S. E.; Williams, K. J.; Curtin, N. J. J. Natl. Cancer Inst. 2004, 96, 56.
8. Tentori, L.; Leonetti, C.; Scarsella, M.; d’Amati, G.; Vergati, M.; Portarena, I.; Xu,
W.; Kalish, V.; Zupi, G.; Zhang, J.; Graziani, G. Clin. Cancer Res. 2003, 9, 5370.
9. For reviews, see: (a) Zaremba, T.; Curtin, N. Anti-Cancer Agents Med. Chem. 2007,
7, 515; (b) Ratnam, K.; Low, J. Clin. Cancer Res. 2007, 13, 1383; (c) Peukert, S.;
Schwahn, U. Exp. Opin. 2004, 14, 1531; (d) Southan, G.; Szabo, C. Curr. Med.
Chem. 2003, 10, 321.
10. White, A.; Almassy, R.; Calvert, A.; Curtin, N.; Griffin, R.; Hostomsky, Z.;
Maegley, K.; Newell, D.; Srinivasan, S.; Golding, B. J. Med. Chem. 2000, 43, 4084.
11. Barkalow, J. H.; Breting, J.; Gaede, B. J.; Haight, A. R.; Henry, R.; Kotecki, B.; Mei,
J.; Pearl, K. B.; Tedrow, J. S.; Viswanath, S. K. Org. Process Res. Dev. 2007, 11, 693.
12. For B16F10 syngeneic studies, 6 ꢀ 104 cells were mixed with 50% matrigel (BD
Biosciences, Bedford, MA) and inoculated by sc injection into the flank of 6–8-
week old female C57BL/6 mice, 20 g (Charles River Laboratories, Wilmington,
MA), on day 1. Mice were injection-order allocated to treatment groups and
PARP inhibitor therapy was initiated on days 6 (for 9b) and 5 (for 9k) following
Animal
t1/2 (h)
Vd (L/kg)
CL (L/h/kg)
%F
Oral AUC (lM h)
Mouse
Rat
Dog
0.6
1.0
2.8
0.6
2.1
3.7
2.9
1.1
4.0
82
26
70.5
12.6
5.78
0.74
6.07
0.65
5.1
0.85
1.4
Monkey
a
Intravenous and oral doses for the above pharmacokinetic studies are as fol-
lows: 3 and 10 mg/kg for mouse, 5 and 5 mg/kg for rat, 2.5 and 2.5 mg/kg for dog,
and 2.5 and 2.5 mg/kg for monkey.
mide was well tolerated, with minimal loss of body weight at high-
est doses.
As shown in Table 4, 9b is orally bioavailable across all animals
species we tested, with significantly better bioavailability in mouse
and dog (82% and 70%, respectively), and modest bioavailability in
rat and monkey (26% and 12%, respectively). Largely due to a slow
rate of clearance, the IV half-life of this compound in dog is rela-
tively longer than that in other species. In addition, compound
9b displayed an excellent aqueous solubility (>5 mg/mL), showed
modest human plasma binding (60–70%), and demonstrated mini-
mal inhibition of several cytochrome p450s (<10% at 10 lM).
In summary, starting from a benzimidazole carboxamide scaf-
fold, we developed a novel series of PARP inhibitors containing a
inoculation, with temozolomide treatment starting on days
respectively.
6 and 5,