2506
A. P. Spork et al.
LETTER
(10) Hisamatsu, Y.; Hasada, K.; Amano, F.; Tsubota, Y.;
Wasada-Tsutsui, Y.; Shirai, N.; Ikeda, S.; Odashima, K.
Chem. Eur. J. 2006, 12, 7733.
(11) Zhu, X.-F.; Williams, H. J.; Scott, A. I. J. Chem. Soc., Perkin
Trans. 1 2000, 2305.
(12) Synthesis of 9 and 13 involving 5¢-O-dimethoxytrityl
protection: (a) Myers, A. G.; Gin, D. Y.; Widdowson, K. L.
J. Am. Chem. Soc. 1991, 113, 9661. (b) Myers, A. G.; Gin,
D. Y.; Rogers, D. H. J. Am. Chem. Soc. 1994, 116, 4697.
(13) Sarabia, F.; Sánchez-Ruiz, A.; Chammaa, S. Bioorg. Med.
Chem. 2005, 13, 1691.
(14) Synthesis of Ester-Derived Sulfonium Salts
A solution of the respective alkyl bromoacetate in degassed
dimethylsulfide (tert-butyl, n-propyl and benzyl esters) or in
acetone–dimethylsulfide (methyl ester) was stirred at r.t. for
2 d. The precipitated product was subsequently filtered off,
washed with n-hexane or PE, and dried in vacuo. With
exception of the tert-butyl ester derivative, the obtained
sulfonium salts still contained significant amounts of
trimethylsulfonium bromide, but could be used for sulfur
ylide generation in crude form. The ethyl ester derivative
was commercially available.
trans-epoxide diastereomer. The absolute configuration
of the two newly formed stereocentres, which had been in-
directly determined for the products of Table 1, entries 1
and 6 (vide supra), was proposed to be identical through-
out.9
In conclusion, we report an improved synthesis of 5¢-epi-
analogues of muraymycin nucleoside antibiotics using a
novel ‘direct’ sulfur ylide approach. This route bypasses
several steps of the previously reported methodology for
5¢-epi-muraymycin synthesis while retaining its excellent
stereoselectivity, therefore giving rise to a highly conver-
gent strategy. The longest linear sequence from uridine to
a target structure is comprised of seven steps only. The ap-
parent broad scope of the newly established ‘direct’ sulfur
ylide reaction will allow the rapid modular synthesis of
novel muraymycin analogues, which can then be screened
for MraY inhibitor activity.
Acknowledgment
(15) Examples: (a) Jiang, Y.; Ma, D. Tetrahedron: Asymmetry
2002, 13, 1033. (b) Oba, M.; Nishiyama, N.; Nishiyama, K.
Tetrahedron 2005, 61, 8456. (c) Tada, T.; Ishida, Y.; Saigo,
K. J. Org. Chem. 2006, 71, 1633.
(16) Synthesis of Epoxy Ester 17 via ‘Direct’ Sulfur Ylide
Reaction
We thank the Deutsche Forschungsgemeinschaft (DFG, SFB 803
‘Functionality controlled by organization in and between membra-
nes’) and the Fonds der Chemischen Industrie (FCI) for financial
support. Donation of laboratory equipment by the BASF SE is gra-
tefully acknowledged.
A solution of sulfonium salt 18 (430 mg, 1.67 mmol) in dry
THF (10 mL) was stirred over 4 Å MS at r.t. for 2 h to
remove any traces of H2O from the hygroscopic sulfonium
salt. Sodium hydride (60% suspension in mineral oil, 68 mg,
1.7 mmol) was then added at 0 °C, and the mixture was
stirred at r.t. for 4 h. After filtration and evaporation of the
solvent under reduced pressure, the obtained sulfur ylide was
dissolved in dry CH2Cl2 (2 mL). This solution of the sulfur
ylide was added in aliquots (0.5 mL each) at 0 °C over a
period of 4 h to a stirred solution of uridine aldehyde 13 (99
mg, 0.168 mmol, freshly prepared by IBX oxidation of
protected uridine 9 in MeCN) in dry CH2Cl2 (2 mL). After
addition of more CH2Cl2 (25 mL) and H2O (25 mL), the
aqueous layer was extracted with EtOAc (25 mL). The
combined organics were dried over Na2SO4, and the solvent
was evaporated under reduced pressure. The resultant crude
product was purified by column chromatography (PE–
EtOAc, 9:1) to give 17 (93 mg, 79%) as a colourless solid;
mp 71 °C. TLC: Rf = 0.50 (PE–EtOAc, 7:3). [a]D20 +31.6 (c
1.3, CHCl3). 1H NMR (300 MHz, C6D6): d = –0.06 (s, 3 H,
SiCH3), –0.01 (s, 3 H, SiCH3), 0.07 (s, 3 H, SiCH3), 0.09 (s,
3 H, SiCH3), 0.87 [s, 9 H, SiC(CH3)3], 0.93 [s, 9 H,
SiC(CH3)3], 1.33 [s, 9 H, OC(CH3)3], 3.24 (s, 3 H, OCH3),
3.39 (dd, J = 1.3, 1.3 Hz, 1 H, 5¢-H), 3.65 (d, J = 1.3 Hz, 1
H, 6¢-H), 3.97 (dd, J = 4.3, 4.3 Hz, 1 H, 3¢-H), 4.06 (dd,
J = 4.3, 1.3 Hz, 1 H, 4¢-H), 4.10 (dd, J = 4.3, 4.3 Hz, 1 H, 2¢-
H), 5.04 (d, J = 13.3 Hz, 1 H, PMB-CH2-Ha), 5.12 (d,
J = 13.3 Hz, 1 H, PMB-CH2-Hb), 5.46 (d, J = 8.1 Hz, 1 H, 5-
H), 6.10 (d, J = 4.3 Hz, 1 H, 1¢-H), 6.72 (d, J = 8.2 Hz, 2 H,
PMB-3-H, PMB-5-H), 7.42 (d, J = 8.1 Hz, 1 H, 6-H), 7.67
(d, J = 8.2 Hz, 2 H, PMB-2-H, PMB-6-H). 13C NMR (75
MHz, C6D6): d = –5.1 (SiCH3), –4.7 (SiCH3), –4.5 (SiCH3),
–4.5 (SiCH3), 18.2 [SiC(CH3)3], 25.9 [SiC(CH3)3], 26.0
[SiC(CH3)3], 27.8 [OC(CH3)3], 43.7 (PMB-CH2), 51.2 (C-
6¢), 54.6 (OCH3), 56.9 (C-5¢), 73.7 (C-3¢), 75.6 (C-2¢), 78.9
(C-4¢), 82.5 [OC(CH3)3], 89.2 (C-1¢), 102.7 (C-5), 114.0
(PMB-C-3, PMB-C-5), 129.8 (PMB-C-1), 131.5 (PMB-C-2,
PMB-C-6), 136.5 (C-6), 151.4 (C-2), 159.7 (PMB-C-4),
161.8 (C-4), 167.1 (ester C=O). MS (ESI+): m/z = 727.4 [M
References and Notes
(1) Taubes, G. Science 2008, 321, 356.
(2) Walsh, C. Nat. Rev. Microbiol. 2003, 1, 65.
(3) MraY as a potential drug target: (a) Dini, C. Curr. Top.
Med. Chem. 2005, 5, 1221. (b) Bugg, T. D. H.; Lloyd, A. J.;
Roper, D. I. Infect. Disorders Drug Targets 2006, 6, 85.
(4) Initial work on MraY and identification of the mraY gene:
(a) Struve, W. G.; Neuhaus, F. C. Biochem. Biophys. Res.
Commun. 1965, 18, 6. (b) Struve, W. G.; Sinha, R. K.;
Neuhaus, F. C.; Prime, M. S. Biochemistry 1966, 5, 82.
(c) Heydanek, M. G.; Struve, W. G.; Neuhaus, F. C.
Biochemistry 1969, 8, 1214. (d) Ikeda, M.; Wachi, M.; Jung,
H. K.; Ishino, F.; Matsuhashi, M. J. Bacteriol. 1991, 173,
1021. (e) Boyle, D. S.; Donachie, W. D. J. Bacteriol. 1998,
180, 6429.
(5) More recent work on MraY including methodology for
activity assays: (a) Bouhss, A.; Mengin-Lecreulx, D.;
Le Beller, D.; van Heijenoort, J. Mol. Microbiol. 1999, 34,
576. (b) Lloyd, A. J.; Brandish, P. E.; Gilbey, A. M.; Bugg,
T. D. H. J. Bacteriol. 2004, 186, 1747. (c) Bouhss, A.;
Crouvoisier, M.; Blanot, D.; Mengin-Lecreulx, D. J. Biol.
Chem. 2004, 279, 29974. (d) Stachyra, T.; Dini, C.; Ferrari,
P.; Bouhss, A.; van Heijernoort, J.; Mengin-Lecreulx, D.;
Blanot, D.; Biton, J.; Le Beller, D. Antimicrob. Agents
Chemother. 2004, 48, 897.
(6) Review: Kimura, K.-I.; Bugg, T. D. H. Nat. Prod. Rep. 2003,
20, 252.
(7) McDonald, L. A.; Barbieri, L. R.; Carter, G. T.; Lenoy, E.;
Lotvin, J.; Petersen, P. J.; Siegel, M. M.; Singh, G.;
Williamson, R. T. J. Am. Chem. Soc. 2002, 124, 10260.
(8) (a) Lin, Y.-I.; Li, Z.; Francisco, G. D.; McDonald, L. A.;
Davis, R. A.; Singh, G.; Yang, Y.; Mansour, T. S. Bioorg.
Med. Chem. Lett. 2002, 12, 2341. (b) Yamashita, A.;
Norton, E.; Petersen, P. J.; Rasmussen, B. A.; Singh, G.;
Yang, Y.; Mansour, T. S.; Ho, D. M. Bioorg. Med. Chem.
Lett. 2003, 13, 3345.
(9) Sarabia, F.; Martín-Ortiz, L. Tetrahedron 2005, 61, 11850.
Synlett 2009, No. 15, 2503–2507 © Thieme Stuttgart · New York