Journal of the American Chemical Society
Article
2009, 11, 4774−4776. (c) Nicolaou, K. C.; Dong, L.; Deng, L. J.;
Talbot, A. C.; Chen, D. Y. K. Chem. Commun. 2010, 46, 70−72.
(d) Lazarski, K. E.; Hu, D. X.; Sterm, C. L.; Thomson, R. J. Org. Lett.
2010, 12, 3010−3013. (e) Singh, V.; Bhalerao, P.; Mobin, S. M.
Tetrahedron Lett. 2010, 51, 3337−3339. (f) Baitinger, I.; Mayer, P.;
Trauner, D. Org. Lett. 2010, 12, 5656−5659. (g) Gu, Z.; Zakarian, A.
Org. Lett. 2011, 13, 1080−1082. (h) Dong, L.; Deng, L.; Lim, Y. H.;
Leugn, G. Y. C.; Chen, D. Y.-K. Chem.-Eur. J. 2011, 17, 5778−5781.
For an elegant synthesis of maoecrystal Z, see: (i) Cha, J. Y.; Yeoman,
J. T. S.; Reisman, S. E. J. Am. Chem. Soc. 2011, 133, 14964−14967.
(4) Gong, J.; Lin, G.; Sun, W.; Li, C.; Yang, Z. J. Am. Chem. Soc.
2010, 132, 16745−16746.
CONCLUSION
■
In summary, the total synthesis of maoecrystal V, albeit as a
racemate, has been completed. Among the key steps was the
IMDA reaction of 28, which served to construct virtually the
entire core system from a precursor obtained in one step from
readily available starting materials. Key features of the synthesis
included solution of the facial selectivity problem in the IMDA
reaction by utilization of an achiral A-ring equivalent. Another
feature involved creating the required trans-fusion of the A- and
C-rings through intramolecular delivery of a hydrogen to the
otherwise hindered β-face of C5 (see epoxidation of
intermediate 40 and rearrangement of the oxirane to 41).
The same logic was used to control the methyl group at C16,
although in this instance the elegance of the scheme was
compromised by a surprising nonstereospecific epoxidation of
the trisubstituted olefin between carbons 15 and 16.
The general directions that can be anticipated for an
improved synthesis are clear. Ideally, one would be able to
achieve enantiomeric control in the critical IMDA reaction.
Moreover, it would be preferable if the trisubstituted olefin,
eventually between carbons 15 and 16, could be introduced at a
much earlier point. Finally, it could well be hoped to achieve
stereoselectivity in the epoxidation of this 15−16 double bond
by fine-tuning the electronic characteristics of the A-ring.28
Future studies along these general lines are envisioned.
However, even in advance of these very important upgrades,
soon to be pursued, we feel that much has already been learned
from “operation maoecrystal V”.
(5) Wilson, R. M.; Danishefsky, S. J. J. Org. Chem. 2007, 72, 4293−
4305.
(6) Roush, W. R. In Comprehensive Organic Synthesis; Trost, B. M.,
Ed.; Pergamon: Oxford, 1991; Vol. 5, pp 513−550.
(7) (a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.;
Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668−1698.
(b) Liao, C.; Peddinti, R. K. Acc. Chem. Res. 2002, 35, 856−866.
(c) Ihara, M. Chem. Pharm. Bull. 2006, 54, 765−774.
(8) Peng, F.; Yu, M.; Danishefsky, S. J. Tetrahedron Lett. 2009, 50,
6586−6587.
(9) Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. J. Am. Chem. Soc.
2000, 122, 1360−1370.
(10) Stork, G.; Danheiser, R. J. Org. Chem. 1973, 38, 1775.
(11) Still, C.; Mitra, A. J. Am. Chem. Soc. 1978, 100, 1927−1928.
(12) Rabideau, P. W. Tetrahedron 1989, 45, 1579−1603.
(13) (a) Whitesides, G. M.; Whmann, W. J. J. Org. Chem. 1970, 35,
3565−3567. (b) Williams, D. R.; Robinson, L. A.; Nevill, C. R.; Reddy,
J. P. Angew. Chem., Int. Ed. 2007, 46, 915−918.
(14) Seeman, J. I. Chem. Rev. 1983, 83, 84−134.
(15) In our hands, in related cases, attempted use of a propiolate
ester for the IMDA reaction was unsatisfactory. Insofar as reaction
occurred, it was followed by aromatization.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures, spectral and other characterization
data. This material is available free of charge via the Internet at
■
S
(16) Peng, F.; Danishefsky, S. J. Tetrahedron Lett. 2011, 52, 2104−
2106.
(17) For the application of Birch-type alkylation in natural product
synthesis: (a) Kondo, K.; Sodeaka, M.; Mori, M.; Shibasaki, M.
Tetrahedron Lett. 1993, 34, 4219−4223. (b) Schultz, A. G.; Holoboski,
M. A.; Smvth, M. S. J. Am. Chem. Soc. 1996, 118, 6210−6219.
(c) Schultz, A. G.; Wang, A. J. Am. Chem. Soc. 1998, 120, 8259−8260.
(18) (a) Strekowski, L.; Kong, S.; Battiste, M. A. J. Org. Chem. 1988,
53, 901−904. (b) Guan, Z. H.; Zuo, W.; Zhao, L. B.; Ren, Z. H.; Liang,
Y. M. Synthesis 2007, 1465−1470. (c) Danishefsky, S. J.; Harayama, T.;
Singh, R. K. J. Am. Chem. Soc. 1979, 101, 7008−7012. (d) Danishefsky,
S. J.; Morris, J.; Mullen, G.; Gammill, R. J. Am. Chem. Soc. 1982, 104,
7591−7599.
AUTHOR INFORMATION
Corresponding Author
■
Present Address
§Merck &Co., Inc., Rahway, New Jersey 07065, United States.
Notes
The authors declare no competing financial interest.
(19) (a) Hayashi, Y.; Rohde, J. J.; Corey, E. J. J. Am. Chem. Soc. 1996,
118, 5502−5503. (b) Corey, E. J.; Shibata, T.; Lee, T. W. J. Am. Chem.
Soc. 2002, 124, 3808−3809. (c) Ryu, D. H.; Corey, E. J. J. Am. Chem.
Soc. 2003, 125, 6388−6390. (d) Corey, E. J. Angew. Chem., Int. Ed.
2002, 41, 1650−1667.
ACKNOWLEDGMENTS
■
Support was provided by the NIH (GM102872 to S.J.D.). F.P.
thanks Eli Lilly and Co. for a graduate fellowship. We thank
Drs. J. Decatur and Y. Itagaki for NMR and mass spectrometric
assistance, respectively; Aaron Sattler and Wes Sattler (Parkin
group, Columbia University) for X-ray experiments (NSF,
CHE-0619638); Yanqing Pan (Now Gilead Alberta ULC) for
synthesizing important intermediates; and William F. Berkowitz
for helpful discussions. Special thanks to Rebecca Wilson for
valuable help in editing the manuscript.
(20) Otsubo, K.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1987,
28, 4435−4436.
(21) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93,
1307−1370.
(22) Oppolzer, W.; Godel, T. J. Am. Chem. Soc. 1978, 100, 2583−
2584.
(23) (a) Lombardo, L. Tetrahedron Lett. 1982, 23, 4293−4294.
(b) Lombardo, L. Organic Syntheses 1987, 65, 81−83.
(24) (a) Rousseau, G.; Conia, J. M. Tetrahedron Lett. 1981, 22, 649−
652. (b) Denis, J. M.; Girard, C.; Conia, J. M. Synthesis 1972, 549−
551.
REFERENCES
■
(1) Sun, H. D.; Xu, Y. L.; Jiang, B. Diterpenoids from Isodon Species;
Science Press: Beijing, China, October 2001.
(2) Li, S. H.; Niu, X. M.; Shen, Y. H.; Zhang, H. J.; Sun, H. D.; Li, M.
L.; Tian, Q. E.; Lu, Y.; Cao, P.; Zhang, Q. T. Org. Lett. 2004, 6, 4327−
4330.
(3) (a) Gong, J.; Lin, G.; Li, C. C.; Yang, Z. Org. Lett. 2009, 11,
4770−4773. (b) Krawczuk, P. J.; Schone, N.; Baran, P. S. Org. Lett.
(25) Birman, V. B.; Danishefsky, S. J. J. Am. Chem. Soc. 2002, 124,
2080−2081.
(26) (a) Mello, R.; Fiorentino, M.; Fusco, C.; Curci, R. J. Am. Chem.
Soc. 1989, 111, 6749−6757. (b) D’Accolti, L.; Dinoi, A.; Fusco, C.;
Russo, A.; Curci, R. J. Org. Chem. 2003, 68, 7806−7810.
G
dx.doi.org/10.1021/ja309905j | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX