10.1002/anie.202005891
Angewandte Chemie International Edition
RESEARCH ARTICLE
Wu, Chem. Rev. 2019, 119, 2090 – 2127. c) M. Beller, Catalytic
Carbonylation Reactions, Springer, Berlin, 2006. d) X. F. Wu, H.
Neumann, M. Beller, Chem. Soc. Rev. 2011, 40, 4986–5009. e) X. F. Wu,
RSC Adv. 2016, 6 83831–83837. f) Y. Li, Y. Hu, X. F. Wu, Chem. Soc.
Rev. 2018, 47, 172–194. g) C. F. J. Barnard, Org. Process Res. Dev.
2008, 12, 566–574. h) I. Omae, Coord. Chem. Rev. 2011, 255, 139–160.
i) R. Grigg, S. P. Mutton, Tetrahedron. 2010, 66, 5515–5548. j) X. F. Wu,
RSC Adv. 2016, 6, 83831–83837.
Conclusion
In summary, we have developed a new palladium-catalyzed
chlorocarbonylation of aryl (pseudo)halides which uses butyryl
chloride as in situ source of both CO and Cl. This reaction gives
access to a broad variety of acid chlorides, starting from
commercially available or easily accessible aryl bromides, iodides,
and triflates. Inexpensive butyryl chloride as a donor not only
addresses the safety issues encountered with the use of
exogenous carbon monoxide, but also overcomes the need for
specialized equipment, such as high-pressure or two-chamber
reactors. A single catalytic system can be used to synthesize a
broad range of carbonyl-containing products in a one-pot two-step
procedure which normally requires different catalytic systems and
pressurized CO for their synthesis.
In-depth experimental and computational studies of the reaction
mechanism point towards in situ generation of CO from butyryl
chloride and its incorporation into the aryl halide. In contrast to our
previously reported functional group metathesis between aryl
iodides and aroyl chlorides, the pathway via reductive elimination
with the Xantphos ligand is kinetically unfavorable when
employing aliphatic acid chlorides as reagents.
[4]
For selected examples see: a) X. F. Wu, H. Neumann, M. Beller,
ChemCatChem 2010, 2, 509–513. b) R. H. Munday, J. R. Martinelli, S.
L. Buchwald, J. Am. Chem. Soc. 2008, 130, 2754–2755. c) D. Watson,
X. Fan, S. L. Buchwald, J. Org. Chem. 2008, 73, 7096–7101. d) M.
Arthuis, A. Lecup, E. Roulland, Chem. Commun. 2010, 46, 7810–7812.
e) W. Mägerlein, A. F. Indolese, M. Beller, Angew. Chem. Int. Ed. 2001,
40, 2856–2859. f) J. Albaneze-Walker, C. Bazaral, T. Leavey, P. G.
Dormer, J. A. Murry, Org. Lett. 2004, 6, 2097–2100.
[5]
For selected examples see: a) J. R. Martinelli, D. A. Watson, D. M. M.
Freckmann, T. E. Barder, S. L. Buchwald, J. Org. Chem. 2008, 73, 7102–
7107. b) J. R. Martinelli, T. P. Clark, D. A. Watson, R. H. Munday, S. L.
Buchwald, Angew. Chem. Int. Ed. 2007, 46, 8460–8463.; Angew. Chem.
2007, 119, 8612–8615. c) Q. Yang, H. Cao, A. Robertson, H. Alper, J.
Org. Chem. 2010, 75, 6297–6299. d) A. C. Tadd, A. Matsuno, M. R.
Fielding, M. C. Willis, Org. Lett. 2009, 11, 583–586. e) H. Cao, H. Alper,
H. Org. Lett. 2010, 12, 4126–4129. f) X. F. Wu, H. Neumann, M. Beller,
Chem. Eur. J. 2010, 16, 9750–9753.
[6]
[7]
a) X. F. Wu, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2010, 49,
5284–5288.; Angew. Chem. 2010, 122, 5412–5416. b) X. Wu, P. Nilsson,
M. Larhed, J. Org. Chem. 2005, 70, 346–349. c) X. F. Wu, H. Neumann,
A. Spannenberg, T. Schulz, H. Jiao, M. Beller, J. Am. Chem. Soc. 2010,
132, 14596–14602.
Experimental Section
For selected examples see: a) B. M. O’Keefe, N. Simmons, S. F. Martin,
Org. Lett. 2008, 10, 5301–5304. b) M. V. Khedkar, P. J. Tambade, Z. S.
Qureshi, B. M. Bhanage, Eur. J. Org. Chem. 2010, 2010, 6981–6986. c)
C. Pirez, J. Dheur, M. Sauthier, Y. Castanet, A. Mortreux, Synlett 2009,
18, 1745–1748. d) P. J. Tambade, Y. P. Patil, A. G. Panda, B. M.
Bhanage, Eur. J. Org. Chem. 2009, 2009, 3022–3025. e) E. Maerten, F.
Hassouna, S. Couve-Bonnaire, A. Mortreux, J. F. Carpentier, Y.
Castanet, Synlett 2003, 12, 1874–1876. f) P. Larini, A. Guarna, E. G.
Occhiato, Org. Lett. 2006, 8, 781–784. g) X. F. Wu, H. Neumann, M.
Beller, Tetrahedron Lett. 2010, 51, 6146–6149. h) H. Neumann, A.
Brennführer, M. Beller, Chem. Eur. J. 2008, 14, 3645–3652.
Experimental and computational details, full reference 33, and
compound characterization are given in the supporting
information.
Acknowledgements
This project received funding from the European Research
Council under the European Union's Horizon 2020 research and
innovation program (Shuttle Cat, Project ID:757608). ETH Zürich
is gratefully acknowledged for financial support. We thank the
NMR service, the Molecular and Biomolecular Analysis Service
(MoBiAS), and the Small Molecule Crystallography Center (Dr.
Nils Trapp, SMoCC) of ETH Zürich for technical assistance. P. B.
thanks the FCI for a scholarship. We thank Tristan Delcaillau,
Yong Ho Lee, Michael Bogdos, and Marius Lutz for fruitful
discussions.
[8]
[9]
For selected examples see: a) X. F. Wu, B. Sundararaju, H. Neumann,
P. H. Dixneuf, M. Beller, Chem. Eur. J. 2011, 17, 106–110. b) A. Fusano,
T. Fukuyama, S. Nishitani, T. Inouye, I. Ryu, Org. Lett. 2010, 12, 2410–
2413. c) X. F. Wu, H. Neumann, M. Beller, Chem. Eur. J. 2010, 16,
12104–12107. d) M. S. Mohamed Ahmed, A. Mori, Org. Lett. 2003, 5,
3057–3060. e) M. Iizuka, Y. Kondo, Eur. J. Org. Chem. 2007, 2007,
5180–5182.
a) T. Morimoto, K. Kakiuchi, Angew. Chem. Int. Ed. 2004, 43, 5580–
5588.; Angew. Chem. 2004, 116, 5698–5706. b) T. Schareina, A. Zapf,
A. Cotté, M. Gotta, M. Beller, Adv. Synth. Catal. 2010, 352, 1205–1209.
c) B. Roberts, D. Liptrot, L. Alcaraz, T. Luker, M. J. Stocks, Org. Lett.
2010, 12, 4280–4283.
[10] a) S. D. Friis, A. T. Lindhardt, T. Skrydstrup, Acc. Chem. Res. 2016, 49,
594–605. b) P. Hermange, A. T. Lindhardt, R. H. Taaning, K. Bjerglund,
D. Lupp, T. Skrydstrup, J. Am. Chem. Soc. 2011, 133, 6061–6071.
[11] R. G. Kinney, J. Tjutrins, G. M. Torres, N. J. Liu, O. Kulkarni, B. A.
Arndtsen, Nat. Chem. 2018, 10, 193–199.
Keywords: chlorocarbonylation • palladium • shuttle catalysis •
reaction mechanism • computations
[1]
a) A. Brennführer, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2009,
48, 4114–4133.; Angew. Chem. 2009, 121, 4176–4196. b) H. M.
Colquhoun, D. J. Thompson, M. V. Twigg, Carbonylation: Direct
Synthesis of Carbonyl Compounds, Springer Science+Business Media,
New York, 1996. c) A. Haynes, P. M. Maitlis, G. E. Morris, G. J. Sunley,
H. Adams, P. W. Badger, C. M. Bowers, D. B. Cook, P. I. P. Elliott, T.
Ghaffar, H. Green, T. R. Griffin, M. Payne, J. M. Pearson, M. J. Taylor,
P. W. Vickers, R. J. Watt, J. Am. Chem. Soc. 2004, 126, 2847–2861.
a) A. Schoenberg, I. Bartoletti, R. F. Heck, J. Org. Chem. 1974, 39, 3318–
3326. b) A. Schoenberg, R. F. Heck, J. Org. Chem. 1974, 39, 3327–3331.
For reviews on carbonylation of aryl halides see: a) C. F. J. Barnard,
Organometallics. 2008, 27, 5402–5422. b) J. B. Peng, F. P. Wu, X. F.
[12] R. K. Dieter, Tetrahedron 1999, 55, 4177–4236.
[13] C. A. G. N. Montalbetti, V. Falque, Tetrahedron 2005, 61, 10827–10852.
[14] a) S. Patai, The Chemistry of Acyl Halides. Interscience, London 1972.
b) D. A. Petrone, J. Ye, M. Lautens, Chem. Rev. 2016, 116, 8003–8104.
[15] a) J. S. Quesnel, B. A. Arndtsen, J. Am. Chem. Soc. 2013, 135, 16841–
16844. b) J. S. Quesnel, L. V. Kayser, A. Fabrikant, B. A. Arndtsen, Chem.
Eur. J. 2015, 21, 9550–9555. c) M. G. Torres, Y. Liu, B. A. Arndtsen,
Science 2020, 368, 318–323.
[2]
[3]
[16] a) Y. H. Lee, B. Morandi, Nat. Chem. 2018, 10, 1016–1022. b) M. De La
Higuera Macias, B. A. Arndtsen, J. Am. Chem. Soc. 2018, 140, 10140–
10144.
8
This article is protected by copyright. All rights reserved.