to conjugation and allows direct evaluation of e.g. glycan–protein
interactions with high specificity. Additionally, the methodo-
logy allows quantitation of the ligands installed in the shell.
We envision that the methodology may be applied for
synthesis of glyco-AuNPs of complex glycans and glyco-
peptide aldehydes, as well as in a parallel format to facilitate
rapid screening of biomolecular interactions.
Support from the Danish Natural Science Research Council
and the University of Copenhagen (M. B. T.) is acknowledged.
We thank Lise Arleth for DLS measurements.
Notes and references
1 R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger and
C. A. Mirkin, Science, 1997, 277, 1078.
´
2 R. Levy, N. T. K. Thanh, R. C. Doty, I. Hussain, R. J. Nichols,
D. J. Schiffrin, M. Brust and D. G. Fernig, J. Am. Chem. Soc.,
2004, 126, 10076.
3 Z. X. Wang, R. Levy, D. G. Fernig and M. Brust, J. Am. Chem.
Soc., 2006, 128, 2214.
4 (a) J. M. de la Fuente, A. G. Barrientos, T. C. Rojas, J. Rojo,
J. Canada, A. Fernandez and S. Penades, Angew. Chem., Int. Ed.,
´ ´
2001, 40, 2257; (b) C. C. Lin, Y. C. Yeh, C. Y. Yang, G. F. Chen,
Y. C. Chen, Y. C. Wu and C. C. Chen, Chem. Commun., 2003,
2920; (c) C. L. Schofield, A. H. Haines, R. A. Field and
D. A. Russell, Langmuir, 2006, 22, 6707.
5 M. B. Thygesen, J. Sauer and K. J. Jensen, Chem.–Eur. J., 2009,
15, 1649.
6 (a) J. M. de la Fuente, P. Eaton, A. G. Barrientos, M. Menendez
´
and S. Penades, J. Am. Chem. Soc., 2005, 127, 6192;
´
(b) A. J. Reynolds, A. H. Haines and D. A. Russell, Langmuir,
2006, 22, 1156.
7 (a) S. A. Svarovsky, Z. Szekely and J. J. Barchi, Tetrahedron:
Asymmetry, 2005, 16, 587; (b) R. Leggett, E. E. Lee-Smith,
S. M. Jickells and D. A. Russell, Angew. Chem., Int. Ed., 2007, 46, 4100.
8 K. Larsen, M. B. Thygesen, F. Guillaumie, W. G. T. Willats and
K. J. Jensen, Carbohydr. Res., 2006, 341, 1209.
Fig.
1
Colorimetric detection assays for HAA (K) and BSA
(J, control) with glycopeptide-functionalized AuNPs 8 (A), and
Con A (B) and ECA (C) with glyco-AuNPs 9–11. Legend: 4
(Â, control), 95 (’), 9(I) (m), 9(II) (.), 10(I) (n), 10(II) (,), 11(II)
(B); (I): conditions I, (II): conditions II.
9 M. Brust, J. Fink, D. Bethell, D. J. Schiffrin and C. Kiely, J. Chem.
Soc., Chem. Commun., 1995, 1655.
10 C. S. Weisbecker, M. V. Merritt and G. M. Whitesides, Langmuir,
1996, 12, 3763.
9(conditions II) displayed similar DlSP,max of B30 nm
and kobs of B3 hÀ1 with Con A (5 mM), essentially identical
to previously reported maltose oxime glyco-AuNPs
(9, DlSP,max B33 nm and kobs B2.5 hÀ1, ligand density
B300 glycans/nanoparticle5), indicating that glycan oxime
formations proceeded to high degrees of conversion under
both conditions (Fig. 1B). The detection limit for Con A was
B100 nM (see ESIw). Lactose-functionalized AuNPs,
10(conditions I and II), were completely devoid of a shift in
11 (a) J. Turkevich, P. C. Stevenson and J. Hillier, Discuss. Faraday
Soc., 1951, 11, 55; (b) G. Frens, Nat. Phys. Sci., 1973, 241, 20.
12 (a) H. Otsuka, Y. Akiyama, Y. Nagasaki and K. Kataoka, J. Am.
Chem. Soc., 2001, 123, 8226; (b) S. I. van Kasteren, S. J. Campbell,
S. Serres, D. C. Anthony, N. R. Sibson and B. G. Davis,
Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 18.
13 K. Sugamoto, Y.-I. Matsushita, Y.-H. Kameda, M. Suzuki and
T. Matsui, Synth. Commun., 2005, 35, 67.
14 Y. Y. Chien, M. D. Jan, A. K. Adak, H. C. Tzeng, Y. P. Lin,
Y. J. Chen, K. T. Wang, C. T. Chen, C. C. Chen and C. C. Lin,
ChemBioChem, 2008, 9, 1100.
l
SP with Con A (DlSP,max o1 nm), as expected. In the presence
15 K. J. Jensen, J. Alsina, M. F. Songster, J. Vagner, F. Albericio and
G. Barany, J. Am. Chem. Soc., 1998, 120, 5441.
16 M. G. Bellino, E. J. Calvo and G. Gordillo, Phys. Chem. Chem.
Phys., 2004, 6, 424.
17 The glycopeptide sequence was derived from the tetrapeptide in 6
and comprises an N-terminal tyrosine residue as a chromophore to
aid detection and isolation.
18 (a) K. Aslan, C. C. Luhrs and V. H. Perez-Luna, J. Phys. Chem. B,
2004, 108, 15631; (b) P. Pengo, L. Pasquato and P. Scrimin,
J. Supramol. Chem., 2002, 2, 305.
19 Z. L. Zhi, N. Laurent, A. K. Powel, R. Karamanska, M. Fais,
J. Voglmeir, A. Wright, J. M. Blackburn, P. R. Crocker,
D. A. Russell, S. Flitsch, R. A. Field and J. E. Turnbull,
ChemBioChem, 2008, 9, 1568.
20 (a) E. H. Cordes and W. P. Jencks, J. Am. Chem. Soc., 1962, 84,
826; (b) A. Dirksen, T. M. Hackeng and P. E. Dawson,
Angew. Chem., Int. Ed., 2006, 45, 7581.
21 The following report on nanoparticles with a related reactive shell was
published during the preparation of this manuscript: N. Nagahori,
M. Abe and S.-I. Nishimura, Biochemistry, 2009, 48, 583.
of ECA (5 mM) the selectivity was completely opposite; lactose
AuNPs, 10(conditions I and II), showed DlSP,max of B14 nm
and kobs of B1 hÀ1, whereas maltose AuNPs 9(conditions I)
were completely devoid of a shift (DlSP,max o1 nm) (Fig. 1B).
Interestingly, oxime coupling with the less reactive N-acetyl-
lactosamine and subsequent lectin recognition was comparable
to that of lactose, as judged by the similar profiles of
11(conditions II) and 10(conditions I and II). Control
experiments with aminooxy-terminated AuNPs 4 showed only
minute shifts in lSP of B3 nm and o1 nm upon treatment
with Con A and ECA, respectively (Fig. 1A and B).
In summary, we have developed a novel method for anchoring
of unmodified, reducing glycans and glycopeptide aldehydes
directly to AuNPs with a reactive core–shell architecture.21
This approach avoids synthetic modifications of glycans prior
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 6367–6369 | 6369