pubs.acs.org/joc
electron-donating ligands have been investigated to increase
Nickel N-Heterocyclic Carbene Catalyst for Cross-
Coupling of Neopentyl Arenesulfonates with Methyl
and Primary Alkyl Grignard Reagents
the reactivity and efficiency.2 Since Herrmann reported that
palladium complexes of N-heterocyclic carbene (NHC) cat-
alyzed the Heck reaction,3 NHCs have emerged as attractive
alternatives to phosphine ligands in catalytic transforma-
tions.4 As NHCs, with their strong σ-donor effect combining
with a shielding steric pattern, activate the oxidative addition
step of transition metal-catalyzed reactions,5 metal-NHC
complexes have been recognized as highly reactive catalytic
systems, especially for unactivated alkyl or aryl chlorides.6
Grignard reagents are one of the most widely adopted
organometallic reagents7 in the area of transition metal-
catalyzed cross-coupling reactions. Accordingly, these
metal-NHC complexes have often been applied for the
reactions of organic electrophiles with Grignard reagents.8
However, in reactions with NHC complexes, not only were
the electrophilic compounds limited to organic halides, but
also alkyl Grignard reagents have only rarely been applied.
While organosulfur compounds have not been commonly
used as electrophilic substrates due to their relatively low
reactivity, the recent developments of efficient catalysts
and additives have begun to allow their desulfitative
carbon-carbon cross-coupling reactions.9 We previously
reported that alkyloxysulfonyl moieties attached onto
aromatic compounds could act as chemoselective leaving
groups in reactions with aryl and primary alkyl Grignard
reagents.10 However, a large excess of Grignard reagents was
still required, even at elevated temperatures, in order to
overcome the low reactivity of the alkyloxysulfonyl group
with common nickel catalysts. Therefore, a more electron-
rich metal complex, capable of catalytic activity in an atom-
economical manner at ambient temperature, is desirable.
Recently, we found that neopentyl arenesulfonates 1 read-
ily undergo the cross-coupling reaction with relatively small
amounts of methyl-, neopentyl-, and benzylmagnesium
Chul-Bae Kim, Hyunjong Jo, Bo-Kyoung Ahn,
Chang Keun Kim, and Kwangyong Park*
School of Chemical Engineering and Materials Science,
Chung-Ang University, Seoul 156-756, South Korea
Received October 7, 2009
Nickel N-heterocyclic carbene (NHC) catalytic system
prepared in situ by the reaction of Ni(acac)2 with NHC
precursor efficiently catalyzed the cross-coupling reac-
tion of alkoxysulfonylarenes with methyl, neopentyl, and
benzyl Grignard reagents at ambient temperature.
Transition metal-catalyzed cross-coupling reactions of
organic electrophiles with organometallic reagents have been
employed as a powerful synthetic tool for carbon-carbon
bond formation in the construction of various types of
organic compounds. Organic halides and pseudohalides
containing a variety of sp-, sp2-, and sp3-hybridized C-X
bonds (X = Cl, Br, I, OTf, etc.) have gained wide acceptance
as electrophilic substrates in these reactions.1
€
(5) (a) Wurtz, S.; Glorius, F. Acc. Chem. Res. 2008, 41, 1523.
(b) Praetorius, J. M.; Crudden, C. M. Dalton Trans. 2008, 4079. (c)
ꢀ
´
Dıez-Gonzalez, S.; Nolan, S. P. Coord. Chem. Rev. 2007, 251, 874. (d)
Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. J. Am. Chem.
Soc. 2004, 126, 15195. (e) Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J.
Org. Chem. 1999, 64, 3804. (f) Herrmann, W. H.; Reisinger, C.-P.; Spiegler,
M. J. Organomet. Chem. 1998, 557, 93.
(6) (a) Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. Angew.
Chem., Int. Ed. 2003, 42, 3690. (b) Viciu, M. S.; Kelly, R. A.; Stevens, E. D.;
Naud, F.; Studer, M.; Nolan, S. P. Org. Lett. 2003, 5, 1479. (c) Selvakumar,
Although tertiary phosphines still occupy a predominant
place as the versatile ligands of the catalysts, more powerful
€
K.; Zapf, A.; Beller, M. Org. Lett. 2002, 4, 3031. (d) Gstottmayr, C. W. K.;
Bohm, V. P. W.; Herdtweck, E.; Grosche, M.; Herrmann, W. A. Angew.
Chem., Int. Ed. 2002, 41, 1363.
(7) For a review, see: (a) Seyferth, D. Organometallics 2009, 28, 1598. (b)
Terao, J.; Kambe, N. Acc. Chem. Res. 2008, 41, 1545. (c) Terao, J.; Kambe,
N. Bull. Chem. Soc. Jpn. 2006, 79, 663. (d) Ila, H.; Baron, O.; Wagner,
A. J.; Knochel, P. Chem. Lett. 2006, 35, 2. (e) Knochel, P.; Dohle, W.;
Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu,
V. A. Angew. Chem., Int. Ed. 2003, 42, 4302.
€
(1) For a review, see: (a) Denmark, S. E.; Regens, C. S. Acc. Chem. Res.
2008, 41, 1486. (b) Johnson, J. B.; Rovis, T. Angew. Chem., Int. Ed. 2008, 47,
840. (c) Negishi, E. Bull. Chem. Soc. Jpn. 2007, 80, 233. (d) Alberico, D.;
Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.
(2) (a) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461. (b) Fu,
G. C. Acc. Chem. Res. 2008, 41, 1555. (c) Littke, A. F.; Fu, G. C. Angew.
Chem., Int. Ed. 1998, 37, 3387. (d) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J.
Am. Chem. Soc. 1998, 120, 9722.
€
(3) Herrmann, W. A.; Elison, M.; Fischer, J.; Kocher, C.; Artus, G. R. J.
(8) (a) Hartmann, C. E.; Nolan, S. P.; Cazin, C. S. J. Organometallics
2009, 28, 2915. (b) Berding, J.; Lutz, M.; Spek, A. L.; Bouwman, E.
Organometallics 2009, 28, 1845. (c) Xi, Z.; Liu, B.; Chen, W. J. Org. Chem.
2008, 73, 3954. (d) Organ, M. G.; Abdel-Hadi, M.; Avola, S.; Hadei, N.;
Nasielski, J.; O’Brien, C. J.; Valente, C. Chem.;Eur. J. 2007, 13, 150. (e)
Matsubara, K.; Ueno, K.; Shibata, Y. Organometallics 2006, 25, 3422.
(9) For a review, see: Dubbaka, S. R.; Vogel, P. Angew. Chem., Int. Ed.
2005, 44, 7674.
Angew. Chem., Int. Ed. Engl. 1995, 34, 2371.
(4) For a review, see: (a) Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008,
41, 1440. (b) Kantchev, E. A. B.; O’Brien, C. J.; Organ, M. G. Angew. Chem.,
ꢀ
Int. Ed. 2007, 46, 2768. (c) Dıez-Gonzalez, S.; Nolan, S. P. Top. Organomet.
´
Chem. 2007, 21, 47. (d) Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem. 2005,
1815. (e) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290. (f) Hillier,
A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.; Nolan, S. P. J.
€
Organomet. Chem. 2002, 653, 69. (g) Weskamp, T.; Bohm, V. P. W.;
Herrmann, W. A. J. Organomet. Chem. 2000, 600, 12. (h) Herrmann,
€
W. A.; Kocher, C. Angew. Chem., Int. Ed. Engl. 1997, 36, 2162.
(10) (a) Cho, C.-H.; Sun, M.; Seo, Y.-S.; Kim, C.-B.; Park, K. J. Org.
Chem. 2005, 70, 1482. (b) Cho, C.-H.; Kim, I.-S.; Park, K. Tetrahedron 2004,
60, 4589. (c) Cho, C.-H.; Yun, H.-S.; Park, K. J. Org. Chem. 2003, 68, 3017.
9566 J. Org. Chem. 2009, 74, 9566–9569
Published on Web 11/19/2009
DOI: 10.1021/jo902151h
r
2009 American Chemical Society